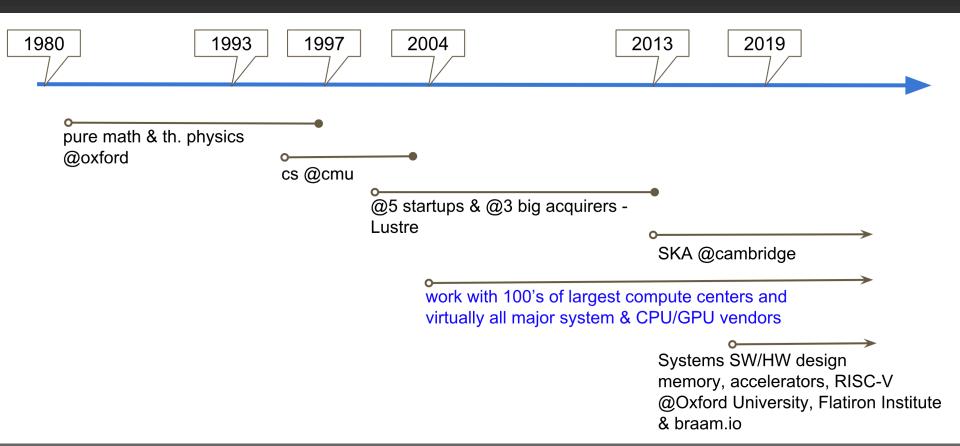
# The SKA telescope, memory bandwidth and POSITs

Prof. Peter J. Braam Physics Department Oxford University peter@braam.io Mar 2019

# Acknowledgement


A large group of people (~500) are working on SKA design 2013-2019 Most information is publicly available, but very technical This presentation re-uses much from other SKA efforts

Particularly I'm using a few slides from Peter Wortmann Background: skatelescope.org

#### My role:

Long term consultant & visiting academic in the Cambridge group: 2013-2018

#### me



# Message from this talk

- 1. SKA telescope is a grand challenge scale project
- 2. Synergy between scientific computing and industry for performance

Hardware – particularly memory, energy

Software – agility, parallelism, energy

- 3. Pre Hardware use of POSITs can dramatically reduce memory bandwidth
- 4. Deep questions and alternative approaches may have long term value

# What is the SKA?

# The Square Kilometre Array (SKA)

Next Generation radio telescope – compared to best current instruments it will offer

...

- ~ 100 times more sensitivity
- ~ 10<sup>6</sup> times faster imaging the sky
- More than 5 square km of collecting area over distances of >100km

Will address some of the key problems of astrophysics and cosmology (and physics)

- Builds on techniques developed originally in Cambridge
- It is an Aperture Synthesis radio telescope ("interferometer")

Uses innovative technologies...

- Major ICT project
- Need performance at low unit cost

#### **SKA International Design Consortia**



Project Management and System Engineering Team based at JBO (UK)

~500 scientists & engineers in institutes & industry in 11 Member countries

WIDE BAND SINGLE PIXEL FEEDS







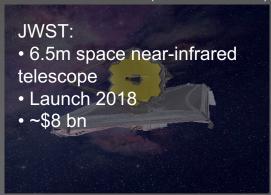




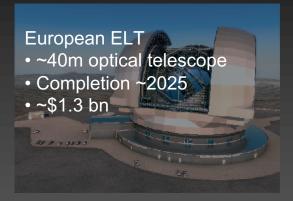












# SKA – a partner to ALMA, EELT, JWST



Credit:A.
Marinkovic/XCam/ALMA(ESO/NAOJ/NRAO)



**Credit:** Northrop Grumman (artists impression)



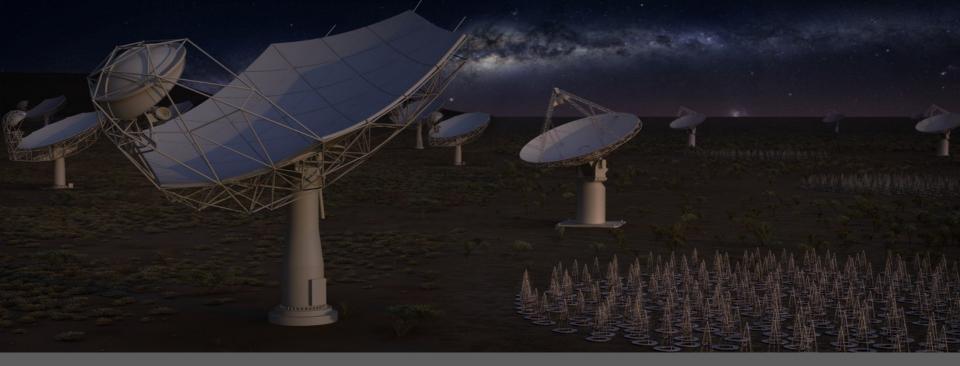
Credit:ESO/L. Calçada (artists impression)



**Credit:** SKA Organisation (artists impression)

# In summary ...

- SKA aims to be a world class "instrument" like CERN
- SKA Phase 1 in production 2025. Design wrapping up in 2019.
- SKA Phase 2 likely 10x more antennas 2030's?
- This presentation focuses on SKA1
- Caveat
  - Ongoing changes
  - Some inconsistencies in the numbers

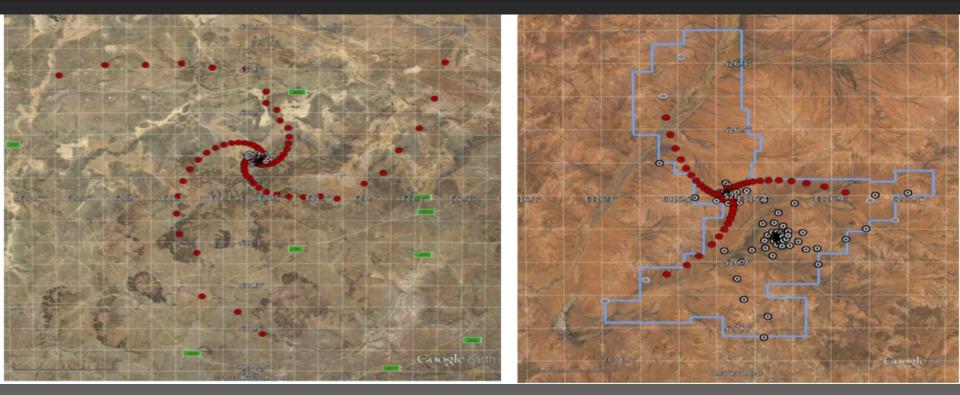

**Low Frequency Aperture Array** 0.05 - 0.5 GHz

Australia

~1000 stations 256 antennas each phased array with beamformers

Murchison Desert 0.05 humans/km<sup>2</sup> Compute in Perth






#### **Mid Frequency Telescope**

South Africa

250 dishes with single receiver Karoo Desert, SA - 3 humans / km<sup>2</sup> Compute in Cape Town (400 km)

# **Antenna array layout**



SKA1-MID, -LOW: Max Baseline = 156km, 65 km

# Science

#### **Science Headlines**

Fundamental Forces & Particles

#### Gravity

- Radio Pulsar Tests of General
- Relativity
- Gravitational Waves
- Dark Energy / Dark Matter

#### Magnetism

Cosmic Magnetism

#### **Origins**

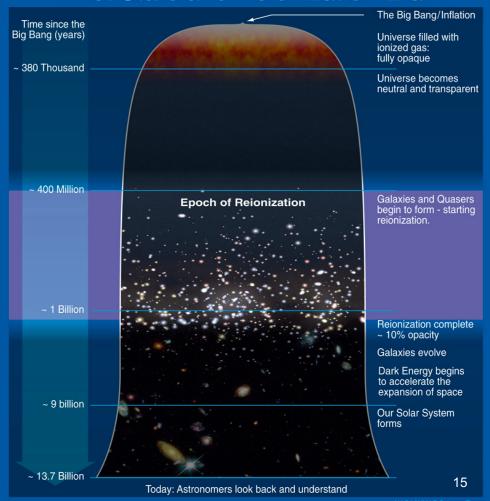
#### Galaxy & Universe

- Cosmic dawn
- First Galaxies
- Galaxy Assembly & Evolution

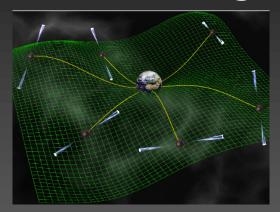
#### Stars Planets & Life

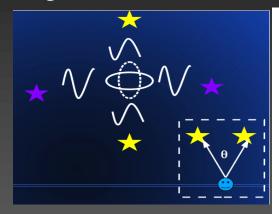
- Protoplanetary disks
- Biomolecules
- SETI

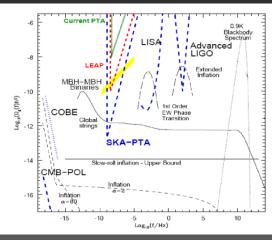
# **Epoch of Re-Ionisation**


21 cm Hydrogen spectral line (HI)

Difficult to detect

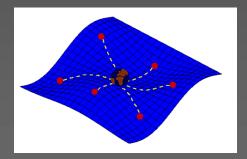

Tells us about the dark age:


400K – 400M years (current age =13.5G years)


#### First Stars and Reionization Era



# **Pulsar Timing Array**



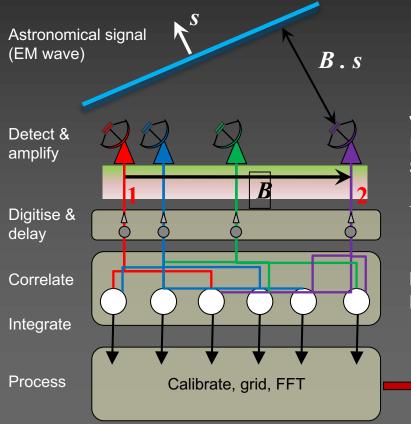





#### What can be found:

- gravitational waves
- Validate cosmic censorship
- Validate "no-hair" hypothesis
- Nano-hertz frequency range
- ms pulsars, rotation fluctuations of 1 in 10^20
- SKA1 should see all pulsars (estimated ~30K) in our galaxy




# Physics & Astrophysics

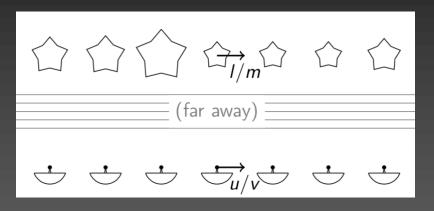
Many key questions in theoretical physics relate to astrophysics

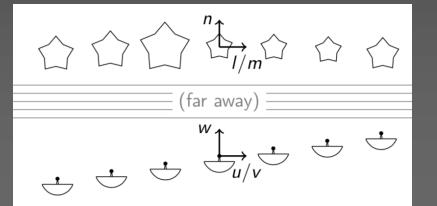
Rate of discoveries in the last 30 years is staggering

# Imaging Problem

#### **Standard interferometer**




Visibility V(B): what is measured on baselines Image I(s): image Solve for I(s)


$$V(\mathbf{B}) = E_1 E_2^* = I(\mathbf{s}) \exp(i \omega \mathbf{B} \cdot \mathbf{s}/c) - \text{image equation}$$

Maximum baseline gives resolution:  $\theta_{max} \sim \lambda / B_{max}$  Dish size determines Field of View (FoV):  $\theta_{dish} \sim \lambda / D$ 

SKY Image

# Interferometry radio telescope





#### **Simplified**

Sky is flat Earth is flat

Telescope to image is Fourier transform

#### **Actually**

Sky is sphere, earth rotates, atmosphere distorts

Now it is a fairly difficult problem:

- 1. Non-linear phase
- 2. Direction, frequency, baseline dependent gain factor

# Computing in radio astronomy - 101

@Antennas: wave guides, clocks, beam-forming, digitizers

@Correlator (CSP central signal processing): == DSP for antenna data

Delivers data for every pair of antenna's (a "baseline")

Dramatically new scale for radio astronomy ~100K baselines

Correlator averages and reduces data, delivers sample every 0.3 sec

Data is delivered in frequency bands: ~64K bands

3 complex numbers delivered / band / 0.3 sec / baseline

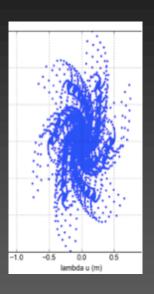
Do math: ~ 1 TB/sec input of so called *visibility data* 

Oscience Data Processor (SDP) – process correlator data
 Create images (6 hrs) & find transients (5 secs) – "science products"
 Adjust for atmospheric and instrument effects calibration

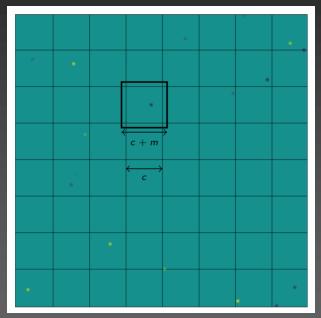
#### Data in the computation

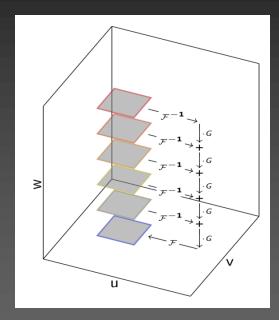
#### Two principal data types

inputs: visibility – irregular, sparse uvw - grid of baselines


output: image grid - regular grid in sky image

#### Different kinds of locality


Splitting the stream by frequency


Visibility "tile" data is highly irregular, but computable

Analyze visibility structure – 0, sparse, dense: separate tile strategies

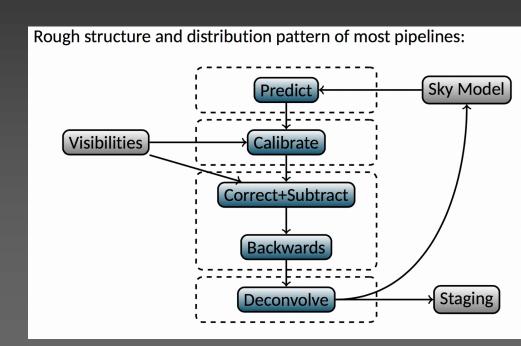


# **Reducing to 2D**





Try to go back from 2D to 3D problem by relating (~100) different w values. Domain-specific optimization.


Grid size is 64K x 64K for 64K frequencies – problem is large Full FFT is O(k log k), sparse FFT: O(#nonzero log #nonzero). This approach is close to this. 23

# Outline of algorithm

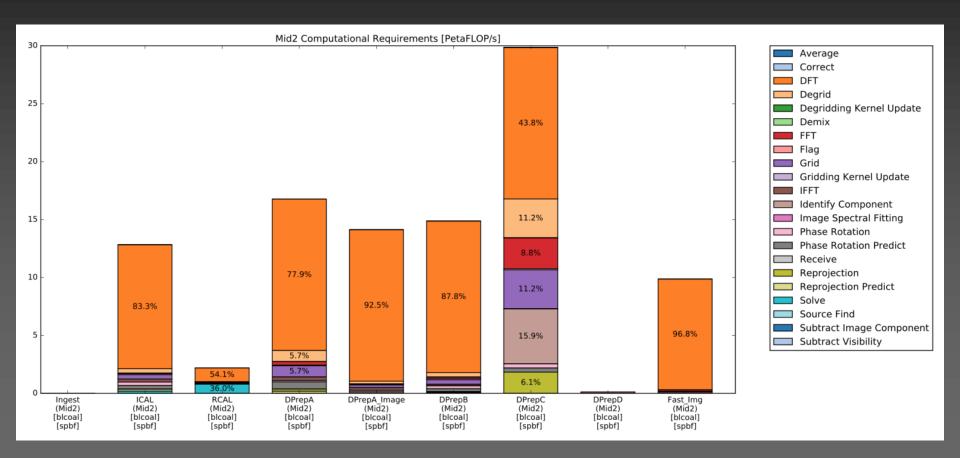
About 5 different analysis algorithms: e.g. spectral vs continuum imaging

#### Imaging pipelines:

- Iterate until convergence approximately 10 times
- Compares with an already known model of the sky
- Incorporates and recalculates calibration data



# SDP specific Pipelines


Algorithmic similarities with other image processing Each step is

- Convolution with some kind of a "filter" e.g. "gridding"
- Fourier transform
- All-to-all for calibration

Why new & different software?

- Data is very distinct from other image processing
- Problem is very large much bigger than RAM
- Reconstruction dependencies: sky model & calibration

#### Relative kernel cost



# SDP "performance engineering" approach

#### **Conservative - this is not computing research**

Known-good algorithms, hardware
Perhaps deep math question remains: is problem really O(#antennas^2)?

#### Parametric model of the computation

Detailed FLOPs, memory use, data movement, energy Key outcome: 100 PF/sec & move 200 PB/sec from HBM to CPU @50 PJ / byte this is ~10MW power 10-30% CPU efficiency

#### Software

Agility: telescope life = 50 years, many HW refreshes Agility: every new telescope has led to serious adaptations of algorithms

# **Samples of Data Processing Considerations**

#### SKA – data schematic

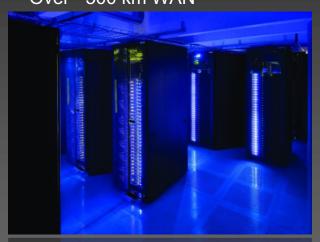
Antennas

Central Signal Processing (CSP)








Transfer antennas to CSP 2024: 20,000 PBytes/day 2030: 200,000 PBytes/day

Over 10's to 1000's kms

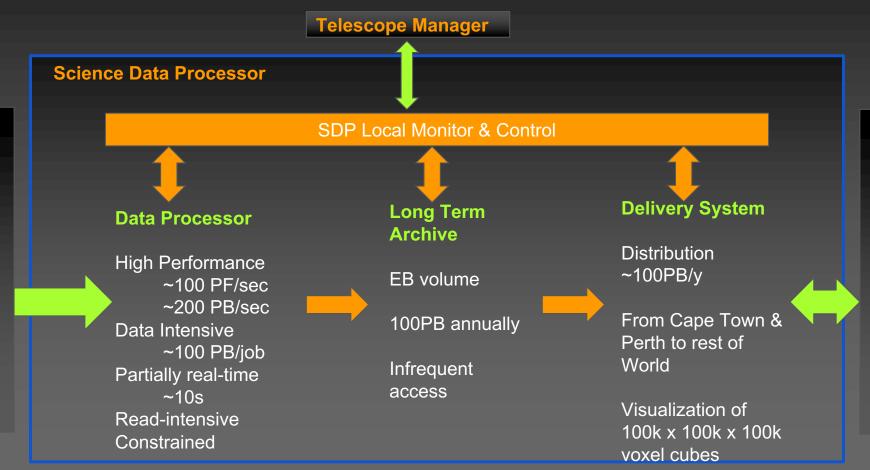
in: 20 EB in -> out: 100 TB (10<sup>5</sup> reduction)

#### Imaging (SDP) – HPC problem

2024: 100 PBytes/day 2030: 10,000 PBytes/day Over ~500 km WAN



High Performance Computing Facility (HPC)


HPC Processing 2024: 300 PFlop 2030: 30 EFlop

30

#### SDP top-level compute challenge

C

S



#### **Data Movement in Science Data Processor**

Primarily compute pipeline steps 10-30% efficiency

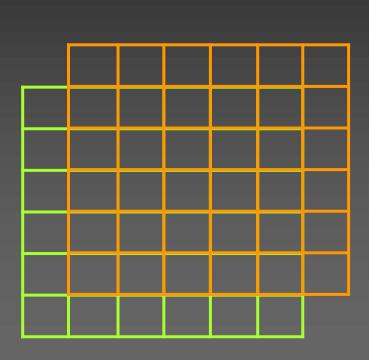
Primarily contains grid data (64Kx64K) at 64K frequencies

Processing Elements: 100 PF/sec



200 PB/sec memory bandwidth

Memory: ~1TB/node




10 TB/sec read bandwidth

Buffer: 25 PB/obs > ~50PB capacity


1 TB/sec ingest I/O (from CSP)

# Visibility gridding & cache re-use



Time (earth) rotation of UV grid.

Only fetch edges Re-use core



Early supercomputer parameters

| 2025             | LFAA (AU)  | Mid (SA)   |
|------------------|------------|------------|
| FLOPS            | 100 PF     | 360 PF     |
| Memory bandwidth | 200 Pb/sec | 200 Pb/sec |
| Buffer Ingest    | 7.3 TB/s   | 3.3 TB/s   |
| Budget           | 45 M€      | 45 M€      |
| Power            | 3.5 MW     | 2 MW       |
| Buffer storage   | 240 PB     | 30 PB      |
| Storage / node   | 85 TB      | 5 TB       |
| Archive storage  | 0.5 EB     | 1.1 EB     |

#### **Memory Bandwidth**

- Cost
- Energy
- 10x first ExaFlop targets

# Memory ... SKA's biggest challenge

High Bandwidth Memory (HBM) is becoming dominant for HPC

In 2013 the problem looked perhaps out of reach

HBM is 2.5/3D, on package, memory technology, 10x BW of RAM

**Delay in SKA the deliverables** has been very helpful

A **domain specific accelerator** similar to Google's TPU v3 could deliver SKA bandwidth with 10,000 nodes. (TPU's are 10x ahead of GPUs for this problem)

#### UNUM's to the rescue?

- Precision and error analysis went out of fashion (very active in 1960's).
  - World converged on IEEE 64 bits
- Compression of non-meaningful error data is difficult
- These issues are now beginning to get attention they need
- For SKA:
- Antenna signals from telescopes have roughly 1 bit of information
- Correlator output 32 bit is planned, but much less would suffice
- Science Data Processor planned 64 bit, but requires much less

# Opportunity – data movement!

- Build system to move data of appropriate precision
  - 50%-75% reduction in memory bandwidth (200PB/sec -> 100PB/sec)
    - 50% reduction in IO bandwidth (10TB/sec -> 5TB/sec)
      - 50% reduction in wide area networking bandwidth (1TB/sec -> 0.5 TB/sec)
- We are talking about significant percentages of the computing, storage and WAN cost.
- Both capacity and bandwidth are affected

# Opportunity – compute accurately

- Long term: mixed precision UNUM systems, well understood accuracy
  - POSIT roadmap
- Short / intermediate term
  - Use spare compute cycles (70%) to convert from wire format to high IEEE precision, after memory bus transfers.
  - Make sure these big numbers don't go back to RAM, only use them during compute (requires cache controls sorely missing high level API !!!).
  - Compute accurately, write back results in appropriate but much smaller number formats

#### Evaluate

- I formed a group of experts working on this
  - John Gustafson, telescope experts, pipeline experts, compiler experts
  - Selected evaluation case: Fourier transforms of large 2D images (wide applicability !!!)
    - Target: demonstrate no flaws in thoughts, suggest strategy of using number formats
- And for the POSIT community
  - This is a grand challenge problem there will be many similar ones
  - Note that bit level (not 2<sup>n</sup> bit level) precision & range control have serious HW cost impact

#### Conclusions

Computing is extremely central in SKA, well beyond the instrument e.g. applying AI / ML to analyzing the science data

Astrophysics has everyone's attention – this project must succeed

SKA will succeed based on astrophysics but its computing lies on the frontier of big data handling

POSIT arithmetic could likely play a key role: cost reduction and agile architecture

Thank you.

questions?

skatelescope.org
peter@braam.io