facebook
Artificial Intelligence Research

Approximate floating point
for Al and beyond

Jeff Johnson

Facebook Al Research
jhj@fb.com

Approximatefloating point for Al and beyond

‘A new golden age for computer architecture’

Hennessy and Patterson, Turing Award lecture, ISCA 2018

* More effective use of memory bandwidth
 User controlled versus caches

* Eliminate unneeded accuracy

* |[EEE replaced by lower precision FP
» 32-64 bit bit integers to 8-16 bit integers

Underneath all the architecture is still the arithmetic.

There need to be more options than this.

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

A ‘new golden age’ for computer arithmetic toos

Are the bits you are moving meaningful? Maybe not. Can you address
this without sacrificing generality? Many domain-specific accelerators

might be over-tailoring their arithmetic.

* More effective use of memory bandwidth
 User controlled versus caches

* Eliminate unneeded accuracy
* |[EEE replaced by lower precision FP

/ « 32-64 bit bit integers to 8-16 bit integers
s accuracy always and everywhere at odds

Do you lose too much mapping work to fixed point? Can you

with efficiency? Attribute difference between

. . . | : ? . .
tolerate approximation for substantial wins memory (DRAM/SRAM) versus in-register

(SRAM/DFF) storage can be exploited

facebook Artificial Intelligence Research

| et’s start with machine learning...

Approximate floating point for Al and beyond

A 60 second view of neural networks

A feedforward neural network is typically composed of blocks of 3 functions (Y. LeCun):

f:R* - R? (a < b)
Filter bank: projection into a higher-dimensional space
on an overcomplete basis, typically a linear function
g:R” - R”
A non-linear function providing saturation and inhibition
h:R? - R¢ (b > ¢)

Dimension reduction: pooling, aggregation over features, sub-sampling

Project into a higher dimensional space, separate, reduce. The linear map f has learned
parameters and is expensive to compute.

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

A 60 second view of (supervised) neural networks

f: project h: reduce

—> 000 —> dog?

g: nonlinearity

R224X224

— ... — [R200000 _, .. _, R1000

106 to 10'% parameters, 10> to 10%" ops to learn parameters from labeled examples (supervision).

Once learned, the network is likely over parameterized (easier to train in higher dimensions) but can
still hopefully generalize (avoids overfitting: hasn’t simply memorized the training set).

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond
Training

Most of the computation is straightforward linear algebra
(matrix/matrix multiplication) or can be expressed as such. Such

operations, especially convolution, has high operand reuse 0| —

potential, making dedicated fixed-function hardware attractive.

People pretend they are operating on the reals, but it is unclear

to what degree people depend upon the regularization or other Nyeeye

: : L L . , 0 - — — — — — — — — — — Ao - — — - - ==
effects of floating point quantization noise in their computation. R oNet 18
Reasonably high precision (and dynamic range) floating point is ZOO_RCSNS'“ . - . 34-1?)“
seemingly necessary, especially in open-ended research where fter. (1ed)
the end result is not predictable. He et al., CVPR 2016

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

Training alternatives

lgnoring algorithmic or GD/optimization

changes (which should be looked to first), Task trained Total compute (ops)
can the required exa/zetta-ops of Original AlexNet 4.7 x 10" = 0.47 exaflops
compute for training be achieved more

efficiently in hardware? We’re limited DeepSpeech 2 2.6 X 10% = 26.0 exaflops
today by memory overheads and by MAC Neural Machine 6.9 x 102" = 6.9 zettaflops
efficiency. Translation

https://blog.openai.com/ai-and-compute/

Precision reduction alone might not cut
it, especially in cases where we don’t
know the gold standard outcome.

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

Inference

Inference is using the trained network to perform classification or
other non-training tasks on new data. We prefer to use cheaper

arithmetic for this. Quantization down to 1-3 uniform bits can be

achieved for many use cases, but might be “overfitting” the

problem, and may be unsuitable for general-purpose accelerators.

Network generalization makes it resistant to noise (and thus

quantization error), though mapping R*4**%2% to, say, R1?%°

maps much junk to the same output value. This can be taken

advantage of by an adversary, but quantization noise will likely be
uncorrelated and will not “follow the gradient”.

facebook Artificial Intelligence Research

robin cheetah armadillo lesser panda

centipede peacock jackfruit
— — i Z T 3 7
I 1 : 2 el 3 -
I
? 1 ¥
g L 3 E
; A t L
b} L 7
i X 7 X 7
A s 7 X 7
7 X ¥
i A s Z
king penguin starfish baseball
L L L T ‘ T . . e v i BT

freight car remote control peacock African grey

Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
Images are either directly (top) or indirectly (bottom) encoded.

Nguyen et al., CVPR 2015

Approximate floating point for Al and beyond

Inference alternatives

My 2018 NeurlPS Workshop for ML paper
Rethinking floating point for deep learning

shows that tiny posit and a log alternative

(we’ll consider in a bit) are useful as a

drop-in replacement for float32

parameters anc

without learnec

activations for inference
quantization, but the

utility of this by itself is perhaps limited.

Extend this to training and beyond?

facebook Artificial Intelligence Research

Table 2: ResNet-50 ImageNet validation set accuracy per math type

Math type Multiply-add type top-1acc (%) top-5 acc (%)
float32 FMA 76.130 92.862
8,1,5,5,7) log ELMA -0.90 -0.20
(7, 1) posit EMA -4.63 -2.28
(8, 0) posit EMA -76.03 -92.36
(8, 1) posit EMA -0.87 -0.19
(8, 2) posit EMA -2.20 -0.85
(9, 1) posit EMA -0.30 -0.09
Jacob et al. [15]:

float32 FMA 76.400 n/a
1nt8/32 MAC -1.50 n/a
Migacz [23]:

float32 FMA 73.230 91.180
1nt8/32 MAC -0.20 -0.03

The search for alternatives

Approximate floating point for Al and beyond

Look to the past (and present) for ideas

Binary stochastic numbers

von Neumann 1952, Gaines 1969

Non-integer and multiple base number systems (f-expansions, MDLNS)
Rényi 1957, Dimitrov et al. 1996

Non-linear maps: log (special case of above), reciprocal, ...
Kingsbury and Rayner 1971, Gustafson 2015

Floating point tapering and entropy coding
Morris 1971, Gustafson 2016, Lindstrom et al. 2018

Learned representations using ROMs/LUTs or RAMs (k-means, VQ, PQ, ...)
Steinhaus 1956, Jégou 2011

facebook Artificial Intelligence Research

12

An approximate

Unify attributes of logarithmic
number systems (LNS) with typical
floating point arithmetic. Simplify
hardware while substantially
Improving accuracy in many cases
over LNS and energy efficiency over
floating point, up to 3x versus
bfloat16 FMA.

However, unlike LNS or FP, the
arithmetic is approximate with
addition ULP error occasionally > 0.5

#1 energy cost is moving data
(DRAM, SRAM, DFF), especially for
low arithmetic intensity workloads
where overhead can’t be

amortized via ‘chunky operations’.

Maximize bit information and

potentially reduce word size

hybrid log-linear computer arithmetic

Thereis a long literature on
floating point error (error-free
transforms etc.), but ”sloppy”
arithmetic provides few
guarantees, or perhaps difficult to

evaluate and prove guarantees.

The degree of approximation is
configurable, but experiment is

unfortunately leading theory here.

13

Approximate floating point for Al and beyond — 14

Traditional Logarithmic Number System (LNS)

Floating point is already hybrid log/linear (exponent/significand) but has wobbling accuracy and

doesn’t exploit all the log benefits (avoiding HW multipliers, dividers, square root). Sign/magnitude

logarithmic number systems (LNS) are fully log domain, typically log base 2.

Example: an 8-bit (3, 4)* log base 2 value: 811110101
1: sign bit (-)
111.0101: two’s complement fixed point exponent (-000.1011, or -0.6875)
Thus 8’b11110101 = -29687>=-0.6209...

Biased exponent or IEEE-style encodings (or posit-style, or whatever) can also be used. A sign

representation and zero encoding are specified, which are outside the log domain.

*: (e, f) notation: e bits of integer exponent
Linear domain: f bits of significand fraction (£2°(1 + f))

Log domain: f fractional bits of exponent (2(¢+/))
facebook Artificial Intelligence Research e.g. [EEE 754 binary32 S (8’ 23)) ignoring AL

Approximate floating point for Al and beyond

LNS concerns

sigma

Multiplication and division are easy and exact. °'4
Giveni =log, x,j = log, y: 02
log, xy =i+ log, \Vx =i/2 |

10g2 .X'/y =1 —j -10 s = -4 -2
Addition and subtraction are not easy or exact. h
log,(xty)=i+o0.(—10) 04
0, (x) = logy(1 % 2%)

Integers not powers of the base cannot be exactly represented, nor can binary radix floating point values. For

example, exact addition by 3 or division by 3 cannot be done.

Similar issues hold with usual FP too; many decimal radix FP values (e.g., 0.1) cannot be exactly represented in

binary radix FP. Representation is sensitive to domain and radix.

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

Why not a traditional LNS?

Error of LNS basic operations is less than traditional FP (O ulp for mul/div, 0.5 ulp avg for

add/sub vs 0.5 ulp avg for add/sub/mul/div in FP), but only if a;.(x) is calculated to 0.5 ulp

average.

o4 (x) requires all range of differences if rounding is to be accurate. This means that the

function evaluator as an exact naive LUT has a O(n2™) cost for a N-bit word arithmetic,

double this for both add and subtract. Long literature of “co-transformation” and

approximation to reduce this.

Hardware resources for high-precision yet accurate

add/sub are large!

facebook Artificial Intelligence Research

TABLE 2
Storage for 32-bit and 20-Bit LNS Addition and Subtraction

Table 32-bit 20-bit

Organisation Bits Organisation Bits
F, D, E Add 256 words x 6 80,384 32 words x 6 4,328
F, D, E Sub 256 words x 6 84,480 32 words x 6 4,928
P I kword 27,648 32 words 480
Fl 2 kwords 63,488 32 words 576
F2 2 kwords 65,536 32 words 608
Total 321,536 10,920

16

Arithmetic on the European Logarithmic Microprocessor,Coleman et al. (2000)

Approximatefloating point for Al and beyond

No analogue to high precision accumulator in LNS

Reduced precision LNS that sums into a higher precision accumulator (like accumulating
float16 in float32, or a Kulisch accumulator) is not possible, unless the hardware

machinery for o4 (x) encompasses the range of the higher precision type.

Linear algebra (many sums of products) is thus a worry, especially in reduced precision.

Note that the concept of “fused multiply-add” ¢’ = r(c + ab) is also no longer necessary;

the multiplication loses no precision with log domain rounding.

“Fused square root-add” ¢’ = r(c + +/a) can be a thing though.

facebook Artificial Intelligence Research

17

Approximate floating point for Al and beyond

A new hybrid system

We want the best of both worlds:

. no hardware multipliers/dividers (LNS &4, floating point X)

o accurate multiplication/division (LNS &4, floating point X)
o reasonably accurate and efficient addition/subtraction (LNS X, floating point V)

For linear algebra with long sums of products, accumulating in a more precise type than the

argument, as seen in e.g., Nvidia GPU mixed-precision wmma instructions, or exact fixed-point

Kulisch accumulators (Kulisch’s ”long adder”), would be useful.

A domain mismatch between LNS and floating point would ensure that additional error would be

introduced, though.

facebook Artificial Intelligence Research

18

Approximatefloating point for Al and beyond

Hybrid log/linear systems
Log values + linear add or linear values + log multiply?

Floating point is hybrid log/linear, but significand operations are always linear

(mul/div/add). Mismatch introduces LZ counters, shifters, loss of mul/div precision, ...

One can operate on linear values, approximate linear domain mul via log domain.

(Mitchell, Computer Multiplication and Division Using Binary Logarithms, 1962)

LNS has issues with a fully log domain summation, as summarized earlier.

But we are typically evaluating sums of products, not products of sums.

A primary log representation (thus, log values + linear add) makes more sense to me if

you’re going to mix the two, as the approximate linear add can be made arbitrarily exact.

facebook Artificial Intelligence Research

19

Approximatefloating point for Al and beyond

Hybrid log/linear systems
Log values + linear add or linear values + log multiply?

Conversion from a log value to a (linear) floating point value and vice versa requires
evaluating the functions p(x) = 2* and q(x) = log,(1 + x) for x € [0, 1). The

precision of the function evaluation can be adjusted.

Thus log to (linear) floating point is 2¥! x p(y — |y]), sign and zero handled separately.

p(x) and q(x) only need to operate on the fractional portion of the value. So, brute force
table sizes go from 2 x 2¢%/ X (e + f) for LNS to 2 X 2™ x m for a e-bit exponent and

f-bit fractional significand. We will show several strategies that can reduce this cost.

We can then apply usual floating point methods on summation.

facebook Artificial Intelligence Research

20

Approximatefloating point for Al and beyond

Log arithmetic with linear sums: FLMA/ELMA

ELMA: log multiply, approximate linear accumulation in fixed point (exact Kulisch

accumulator), convert to log domain when done with sums

FLMA: log multiply, approximate linear accumulation in floating point (with possibly

greater precision), convert to log domain when done with sums
Accumulation accuracy is controllable by three parameters: a, 3, y.

p(x) takes f log domain fraction bits as input and produces «a linear domain fraction as
output. g(x) takes f linear domain fraction bits as input and produces y log domain

fraction bits of output. Except for posit-type codes with an additional rounding,y = f.

To ensure that q(p(x)) = x,weneeda > f+1landb > f + 1.

facebook Artificial Intelligence Research

21

Approximatefloating point for Al and beyond

Log arithmetic with linear sums: FLMA/ELMA

ELMA is cheaper than FLMA for low dynamic range (<6 bits of exponent or so)

For FLMA, mul/div in this arithmetic is 8-20x+ less energy than addition!
(8, 7) log bfloat16 with FLMA (8, 14), mul is ~9x lower energy than add!
(8, 7) log bfloat16 with FLMA (8, 23), mul is ~15x lower energy than add!

Addition is about the same as normal float FMA, so overall energy is way lower.

facebook Artificial Intelligence Research

22

Approximate floating point for Al and beyond

Add/subtract accuracy: effect of o/f3

All unique x + y via ELMA (or FLMA with sufficient accuracy) for (5, 4) log (i.e., f = 4)

Compare qg(po(X) + Po(y)) ulp error versus exact answer

a=B=_[0,05]ulp _(05,15]ulp (15 25]ulp_(35,45]ulp (45,55 ulp __>55ulp

f+1 90.65% 8.89% 0.24% 0.07% 0.06% 0.08%
f+2 96.08% 3.74% 0.13% 0.04% 0.01% -
f+3 98.15% 1.83% 0.02% - - =
f+4 98.82% 1.17% 0.01% - - :
f+5 99.58% 0.42% - = = =
f+6 99.82% 0.18% - - = -
f+7 99.90% 0.10% : = = =
f+8 100.00% - - = - -

facebook Artificial Intelligence Research

Approximate floating point for Al and beyond

FLMA addition accuracy versus traditional LNS

(5, 10) log arithmetic, (5, 20) adder
100 trials of };1* 4 x;, x; ~ N(0,1) ; g
forn € {2,3,4,8,16,...} .

LNS summation via o Is more accurate -

~ a=B=f+1FLMA

only for <4 sequential sums. :

a==f+2 FLMA

a =B =f+3 FLMA

Note that LNS summation is as accurate ,

R

as normal FP summation (0.5 ulp average

a =B =f+4 FLMA

error in their respective domains)

0.5

2 3 4 8 16 32 64 128 256 512 1024 2048 4096

facebook Artificial Intelligence Research
values summed

Approximatefloating point for Al and beyond

Benefits of ELMA/FLMA

Savings from avoiding multipliers can be spent on more accurate linear
accumulation (e.g., larger float accumulator or fixed point Kulisch). Such a
mechanism can be used for floating point as well, but you are starting from a more

expensive baseline. We have no hardware dividers or multipliers whatsoever!
Sum order independence with ELMA (Kulisch), not possible in typical LNS.

For an adder reduction tree (to reduce data movement), n copies of the p(x)
evaluator and g + % + ...+ 1 =n — 1 floating point or Kulisch adders is cheap

compared to stamping out n — 1 copies of the o (x) evaluator (LNS adder).

facebook Artificial Intelligence Research

25

pJ [multiply-add

4.5

3.5

W

i
U

N

-
%)

0.5

28 nm energy efficiency for 1 cycle multiply-add

(solid line meets timing, dashed line fails closure at given clock, with negative slack reported) —

P FMA is Synopsys DesighnWare
d dw fp mac. Circuit strategy is
/ inferred by Synopsys Design Compiler
based on target clock constraints.

Includes DFF energy for registered
A/B/C in all examples (hot just the
operation itself), thus numbers are

log bfloat16 ELMA -0.14 ns higher than those reported elsewhere

but this accounts for variable word

float16 FMA size and cost of maintaining

-0.19 ns
accumulator state as they vary adCross

bfloat16 FMA examples.

log float16 ELMA
_ - > -0.11ns -0.05 ns

- ‘_—-X

log bfloat16 FLMA - (8,1,5,5,7) log posit ELMA _ — — |
—C//# . "0.07 ns

int8/32 MAC

400 500 600 700 800 900 1000 1100
clock (MHz)

26

pJ [multiply-add

4.5

W
3

W

i
U

N

-
0N

0.5

28 nm energy efficiency for 1 cycle multiply-add
(solid line meets timing, dashed line fails closure at given clock, with negative slack reported)

cgrhoiermh _____~—— 0.6067 pJ (log bfloat16 FLMA)
e versus 1.8380 pJ (bfloat16 FMA)
bfloat16 FMA 303X energy efﬁCienCY!

log float16 ELMA

- >< -0.11 ns -0.05 ns

(8,1,5,5,7) log posit ELMA _ _ -~

o
[y

log bfloat16

int8/32 MAC

300 400 500 600 700 800 900 1000 1100
clock (MHz)

27

Approximatefloating point for Al and beyond

Increasing precision

Against floating point fused multiply-add, simple p(x) LUTs (combinational logic or
process-specific compiled ROMs, evaluated on a 28 nm technology) are good on a
power/area basis up to about 13 bits of fractional precision (cost of the LUT is

substantially overridden by the omission of HW multipliers).

This LUT is expensive on an FPGA though (either in BRAM or as combinational logic). Not
sure why you wouldn’t use anything but hardened DSP-friendly math on an FPGA, though.

What about higher precision?

facebook Artificial Intelligence Research

28

Approximatefloating point for Al and beyond

Increasing precision: p(x) (exp2)

Naive LUT: Evaluted to infinite precision and rounded; (2/ a)-bit LUT

LUT encoding Mitchell error (2™ — m): (2Y =2 q)-bit LUT + adder

Piecewise linear/poly approximation: reintroduces multipliers we got rid of
Hyperbolic CORDIC: sequential, slow for high f

High-radix CORDIC (r=8, 16, ...): sequential but faster by factor log, r, more HW

Note that with ELMA (or FLMA if 1-cycle FP add), sequential algorithms might be ok since

they can be fully pipelined, but copies must be instantiated (high power, area)

facebook Artificial Intelligence Research

29

Approximatefloating point for Al and beyond

Increasing precision: q(x) (log2)

Naive LUT: Evaluted to infinite precision and rounded; (2fy)-bit LUT

LUT encoding Mitchell error (m — log, (1 + m)): (2%¥~2)y)-bit LUT + adder
Piecewise linear/poly approximation: reintroduces multipliers we got rid of
Hyperbolic CORDIC: sequential, slow for high

High-radix CORDIC (r=8, 16, ...): sequential but faster by factor log, r, more HW

Note that with ELMA (or FLMA if 1-cycle FP add), sequential algorithms might be ok since

they can be fully pipelined, but copies must be instantiated (high power, area)

facebook Artificial Intelligence Research

30

Approximatefloating point for Al and beyond

Higher precision: hybrid approaches

Novel quasi-symmetrical approach for efficient logarithmic and anti-logarithmic
converters, Hoang and Pham, 2012

On-line high-radix exponential with selection by rounding, Pifieiro et al., 2003

A fast hardware approach for approximate, efficient logarithm and
antilogarithm computation, Paul et al., 2009

The Paul et al. approach is almost a hybrid of log domain approximation for linear

interpolation via multiplication. ~20 bits of precision is achievable fairly cheaply.

For linear algebra, p(x) is the thing that needs the most optimization.

facebook Artificial Intelligence Research

31

Using ELMA/FLMA

Approximatefloating point for Al and beyond

We want more multiplications, fewer additions!

Tricks that substitute multiplication with addition no longer make as much sense; e.g,

Winograd’s original matrix multiplication algorithm:

Consider .=, x;y; (@assuming n even):
2 2
Let ¢ = Z;Zl X@2j-1)%X2j, N = Z;Zl Y2j-1)Y2j;

_ /2
then X1 Xy = ijl(x(Zj—l) + YZj)(XZj +)’(2j—1)) — ¢ —1.
A New Algorithm for Inner Product, S. Winograd, IEEE Trans. on Computers (1968)

For (mxk) X (kxn) matrix multiplications, this trick replaces mnk multiplications and

additions with 0(§mnk) multiplications and 0(% mnk) additions.

facebook Artificial Intelligence Research

33

Approximatefloating point for Al and beyond

Winograd F(mXm,rXr) convolution

The Winograd minimal filtering algorithms similarly substitute addition for multiplication
and are not a win over direct convolution for a single channel convolution, but it is a tile-

based algorithm and there is reuse of the data possible for both data and filter.
2x2 output tile:

Winograd F(2x2, 3x3): has 16 mul, 36 add

Direct convolution: is 36 mul, 32 add

Thus, Winograd F(2x2, 3x3) per tile is >1.05x more energy* than direct convolution in

this arithmetic! It is still useful due to the preprocessing/reuse nature.

*: naive sum of per-operand cost

facebook Artificial Intelligence Research

34

Approximate floating point for Al and beyond

F(2x2, 3x3) Winograd
Convolution (for 2D CNNs)

4x4 float64 data dye, 3x3 filter fr.or (all x; ~ N(O, 1))

Ryer = dyef * frep (direct conv)
R = AT((GftGT) ° (BTdtB))A
MSE Of (Rt - Rref)

log FLMA is more accurate than both

Dynamic range less of an issue; sum-heavy problem
log FLMA is better by

of precision bits
(8, f) float, (8, f) acc +4.60

(8, 1) float, (8, 2f) acc +0.09

facebook Artificial Intelligence Research

MEAN SQUARED ERROR

10 -

1 -

0.1 4

0.01 -~

0.001 -

0.0001 -

0.00001 -

0.000001 A

0.0000001 -

1E-08 -

1E-08

1E-10

1E-11 -+

1E-12 -

1E-13 -+

1E-14 -

(8, f) float, (8, f) acc

(8, f) log, (8, 2f) acc

(8, f) float, (8, 2f)

6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23

BITS OF FRACTIONAL PRECISION

35

Approximate floating point for Al and beyond

LU matrix decomposition
and recovery

32x32 float64 matrix My, ¢

My = r(Myes), My’ = L Uy

MSE of (M’ — Myef)
ll-conditioning is a problem (random

matrices, no pre-conditioning)

Why is the 2f accumulator worse?

Avg bits of additional

fractional precision
versus log FLMA

(8, f) float, (8, f) acc -0.85

(8, 1) float, (8, 2f) acc +1.14

facebook Artificial Intelligence Research

MEAN SQUARED ERROR

100000 -

10000 -

1000 -

100

10 -

1 4

0.1 A

0.01 -

0.001 -

0.0001 -~

0.00001 A

0.000001 -

0.0000001 -

1E-08 -

1E-0S8 -

1E-10 -

1E-11 -

1E-12 -

9

\ 8, f) log, (8, 2f) acc

(8, f) float, (8, 2f) acc

(8, f) float, (8, f) acc

0 11 12 13 14 15 16 17 18 19 20 21 22 23

BITS OF FRACTIONAL PRECISION

36

Raytracing

with only adders,
shifters and

LZ counters!

FLMA
2t acc precision
a=pF=f+1

i AT

10-bit (5, 4) log

16-bit (5, 10) log

12-bit (5, 6) log

18-bit (5, 12) log

14-bit (5, 8) log

20-bit (5, 14) log

37

16-bit (8, 7) log (log bfloat16)

16-bit (16, 1) log posit

32-bit (8, 23) log (log float32)

38

Approximatefloating point for Al and beyond

Expression order

How to reorder add/sub relative to mul/div (i.e., where the log/linear conversions happen):
Precision: mul/div before add or after add?
l.ax+ay+azor2. a(x+y+ z)?
B.ax+ay+zord a(x+y)+ z?

Based on my tests, | suspect #2 but also #3 if this is the entire expression; minimize domain

conversions. How should this heuristic be weighted for more complicated expression trees?

Efficiency: preserve sub-expressions in the linear domain where possible:
ax+y+z)+ f(w —x —y)

(x + y) is a common factor to both, duplicate the accumulator register.

facebook Artificial Intelligence Research

39

Memory overhead and quantization

Approximatefloating point for Al and beyond

Representation efficiency

Efficiency is dominated by word size and the bits that you are moving (DRAM to SRAM,
SRAM to DFF, DFF to DFF).

Hardware algorithmic operand reuse (what Bill Dally calls amortization of the memory
overhead by “chunky operations™) provides significant savings. This only works if the
algorithm in a roofline model sense has high compute intensity (ops per byte

loaded/stored).

Maybe the reason people have been jumping into Al hardware is because convolution has

high algorithmic reuse.

facebook Artificial Intelligence Research

41

Approximate floating point for Al and beyond

Quantization via entropy coding

Gustafson’s posit is a good solution to decreasing
quantization reproduction error for common FP
data distributions. It encodes the floating point
exponent in a prefix-free code, leaving the remainder

to encode the significand.

It still assumes symmetry around x1.0 which is still

not appropriate for many seen distributions.

facebook Artificial Intelligence Research

42

107
10°
10°
10°

107
10°
10°
10*

107
10°
10°
10*

107
10°
10°
10°

107
10°
103
10*

Approximate floating point for Al and beyond

ResNet-50 v1 (8, 1) linear posit activation distribution

network input histogram (entropy 0.8795)

layerl.1.relu3 histogram (entropy 0.6178)

.

layer2.0.relu3 histogram (entropy 0 4551)

.

layer2.2.relu3 histogram (entropy 0.5082)

d
.0.relu3 histogram (entropy 0.4101)

——

facebook Artificial Intelligence Research

layerl.0.relu3 histogram (entropy 0.5077)

.

layerl.2. relu3 histogram (entropy 0.6398)

.

layer2.1.relu3 histogram (entropy 0. 5617)

..

layer2.3.relu3 histogram (entropy 0.5118)

layer3.1.relu3 histogram (entropy 0.4595)

T .

layer3.2.relu3 histogram (entropy 0.4345)

=
4 relu3 histogram (entropy 0.3588)

layer4.0.relu3 histogram (entrop); 674051)

layerd.2.relu3 histogram (entropy 0.5689)

10°

layer3.3.relu3 histogram (entropy 0.4158)

k ad
layer3.5.relu3 histogram (entropy 0.2994)

layerd.1.relu3 histogram (entroﬁil 0.5095)

fc histogram (entropy 0.9128)

43

Approximate floating point for Al and beyond

Quantization noise for activation encodings

The default posit representation is quite suitable for NNs, but | believe the real savings would

be for training situations.

ResNet-50 activation quantization noise: int8 vs 8-bit posit

---------- symmetric int8 —— (8, 1)-posit
40 —— (8, 0)-posit — (8, 2)-posit
T | “

:)
N\ ; W W e
AR 3 A% i ‘

‘ _-.'.: A A A A
; I R v . . .‘-. \ e’ N 8 s | -
EINE T ¥ 1:t ¢ Bif 1t riiy &A1
s AR S TY: 3F 2 WAk % ATy A% '.
. : 3 $3 WE = Y88 F ot R K oPhl '.
£ I ey § ¥ 8 207 88 %

W
-

) e g .
L » - . -
' . , o o - - ~
.t - ~ - e o ‘
" o - .. AR ® * ‘<
) - o . >3 . % .
. - " > » . 4 »
- . s @ »>e s e .. . e - o
> - s © . .. N ‘. ® o .o 9 .
renn ’ . " P-2:9¢ (" s "a*’
., o e ” 5 » s & n "
b . - . . « BN, . o M s
;
- . - . o
s ' - "~ . . 4 - - . B S . ® . . s a S - “ - - ® - s .. ’
AR § N S ES . = v T = el Y - e Y an g - E .. ¥ EPS S
. ol %o e - . . o @ . . o . . . *e » L . e %o . o S X
» at e P . » . - - ‘
e o . % o e ~ . 3 - .
. 219 o . . ¢ . SN 4 ’ . b - " .- - . - ‘ . S . *» - - '-: . .
~ . . L . . ™ L) Ve 2 o
. ’ . . . » . e . . » ® " 9 e -
’ o|® o¥"® -5 o . . W . e ® e -, . . . - . 0 ° -
i ® 8 - * ® . sl . " - ® o - . . - . .
. . - . .
L . . . L] ‘0 . . »
. . ‘.’ - b3 8 8. . ol o % . ’
s & ‘. ™~ .
- - -, - -
i .
. - .
. - . t
M

SONR (in dB)
N
O

N
o

15

104 20 40 60 80 100 120

layer

facebook Artificial Intelligence Research

Approximatefloating point for Al and beyond

Combining the techniques

Posit-type encodings can be applied to log values as well (to the integer and fractional
part of the fixed point exponent).

Intermediate results of computations that must be written out to memory can be
quantized by a posit-type encoding, but operations on the value in-register or in a fixed

function unit (e.g., convolver) can operate on the higher-precision value.

For model training, parameter update w’ = w + aAw is a single sum that will be

inaccurate with ELMA/FLMA. However, since this is a memory bandwidth bound

operation, a (lower throughput) unit performing 0.5 ulp LNS-style addition can be used.

facebook Artificial Intelligence Research

45

Approximatefloating point for Al and beyond

Conclusion

. Many techniques to consider for “alternative math” representations in hardware,

with a long history but little practical consideration in designs.

o Judicious use of approximation can result in substantial increases in energy
efficiency, and may even produce more accurate results for many use cases.

Approximation for log domain arithmetic is very useful in avoiding log overheads.

. Codecs (in the guise of quantization) can substantially reduce memory overheads.

3x+ energy efficiency in compute and 2-4x in memory from these techniques can enable
more powerful Al model training and broader gains on a wide variety of non-high

precision HPC-type workloads that still use half or single precision FP.

facebook Artificial Intelligence Research

46

Rethinking floating point for deep learning
2018 NeurlPS Systems for ML Workshop paper

arXiv: 1811.01721

github.com/facebookresearch/deepfloat

facebook
Artificial Intelligence Research

