Lossless FFTs with
Posit Arithmetic

Dr. Siew Hoon (Cerlane) Leong, CSCS
Prof. John L. Gustafson, ASU

March 1, 2023

\:':‘ C S C S Arizona State

University

Thesis

Fast Fourier Transforms (FFTs) for signal and image processing
have format needs similar to those for Machine Learning... tent-
shaped distribution bounded above but not below.

16-bit IEEE floats are too lossy to use for FFTs, so 32-bit is used.

16-bit posits are sufficiently accurate that FFTs followed by
inverse FFTs can return the original signal without loss.

FFTs with SoftPosit and SoftFloat allow a fair comparison of the
speed of posits with the speed of floats of the same precision.

Typical Discrete Fourier Transform (DFT) Definition

N—-1
Forward DFT: X, = z xXpe 2Tkn/N

n=0
1 N-1
Inverse DFT: Xn = 2 X, et2mikn/N
n=0

It looks like O(N?) work, but Gauss found a shortcut, the “Fast Fourier Transform.”

Rediscovered by Bell Labs researchers Cooley and Tukey in the early 1960s.

FFTs are the “Achilles Heel” of HPC

——smaom 1——f—sTaoma——amace 9 —p—smacm—
’ s /fofvfo:>< "+ Memory wall: O(N logN)
AN //§°XV/:°%“><: o operations, but 0(N4/3)
: :\\\V//io%%éﬁi oo .. data motion
NSV A=

S TANI O -

”A““' .A. :: ° TOPSO(? supercomputers
L0000, N are typically thousands of

zxx{‘w o> times slower at FFTs than

A.

II)Q\\\“Q' 7\: :>< Z at LINPACK.
S -
e

"IN L XXXK e
e o XX\ .. * Solution: more info per bit
o in the data format!

/i ‘0
o x/ AN

The kernel FFT operation is a “butterfly.”

X > x,~+xj
= (XjRes Xjm) = (XiRe +X/Re> Xitm +X 1)
X e (Xl'—Xj)XW
= (XiRes Xilm) = ((XiRe =X jre) X WRe = (Xitm = X j 1) X Wim,
C ")Xwm+(")XWge)
. j 21N . . 27N .
« "Twiddle factors” et?™kn/N — cos (T) + i sin(—-) are often written as w for short.

* Aradix 2 FFT butterfly takes four multiplies, six add/subtracts in general.
* The radix 4 FFT butterfly is more complicated but uses 10% fewer operations.

Are Lossless FFTs possible with 16-bit formats?

‘ Forward ‘ Inverse ‘
FFT FFT

Convert to Round to

7o 16 bits 12 bits

12-bit A-to-D Bitwise Identical
Convertor (ADC) Input Output Data?

e We will show that 16-bit |IEEE floats cannot do this.
 An “idealized” 16-bit float cannot, either. More on this later.

* Since the 1970s, image and signal processing have had to
use 32-bit floats to prevent severe accuracy loss.

What values actually occur in a signal FFT?

7000 ¢
6000
5000
4000
3000
2000

1000

il

m

|

=N

|V

-2.5

-2.0

-1.5

-1.0

-0.5

0o Logqo(lx])

A skewed tent-shaped distribution, provably bounded on the right.

7

|ldealized 16-bit floats do not fit FFT distribution.

Significant Digits " .)
13-bit fraction, ~4.2 decimals | d ed I |Ze d means

 only one NaN value

eS=5 10-bit fraction, ~3.3 decimals

* only one zero

* largest and smallest
exponent cases are
treated as normal

We tried them all, and
they are all very lossy.

eS=7 8-bit fraction,
~2.7 decimals

Dynamic Range

10~ 19 1072 v, 4 10° 1019

New Approach Using 16-Bit Posits

‘ Forward ‘ Inverse ‘
FFT FFT

Convert to Round to

o 16 bits 12 bits

12-bit A-to-D Bitwise Identical
Convertor Input Output Data?

* Tested N =1024 and 4096 points
 Decimation-in-Time (slightly more accurate)
* Radix 4 (five or six “butterfly” passes)

* Value magnitudes cannot exceed VN = 32 or 64.

Remember the posit “sweet spot”

Decimals of accuracy

:ll j :II J Posits

Floats
3 .

2 .
Where most
- calculations =

take place

With eS = 1, 16-bit posits have accuracy = 16-bit IEEE

floats for magnitudes 27° to 2° (1/64 to 64).

Trick #1: Symmetric DFT stays in posit “sweet spot”

N —
2 —kan/N
N—
2 +27Tikn/N

Forward DFT:

ﬁ\H

Inverse DFT:

ﬁ\H

If inputs are in [—1, 1], outputs are in [—\/N, \/N]

11

Trick #2: Use radix 4, n

><(0)
X{1)
x(2)
x(3)
x(4)
x(5)
x(S)
x<(7)
<(8)
x(2)
x<x{10)
>x{11)
x{12}%
x{13)
x{14)
x{15)

ormalize on each pass.
=2

>X(O)
>X(4)
>X(8)
X{(12)
X(1)
>X(3)
>X(9)
X(13)
>X(2)
x(8)
X(106)
>X(14)
><(3)
X(7)

>X(11)
X(15)

This keeps accuracy in the “sweet spot” and normalizes by 1/+/N.

Division by 2 is zero cost if you apply it in the “twiddle factor” table.

One of the

passes involves *

no rounding
from

multiplication;

w is just v—1.

/

&

]
__‘/

i
G

Y
p
V

X
?}6

Y

|]
—\ b al=\a\—-

)
y

L
)
3

Trick #3: Use the quire for the kernel operation

Operations grouped by overbar are exact dot products, then rounded once.

ggliMl.l]l = "AU] + XB|I1]| + xclnn + xDEln; (* MUltlply by (lflg*) . *)

gg[inu,zn = XA[2] + pr] + XCEgn + XDﬁzn;

gg[iB+1,l]] = xA[l] - iflg * XBIZ] + -xClml + iflg* XD[zl; [* Ml.lltlply by 1lflg*‘. L a

99(18+1,2n = ﬂizl + .if.lg * "3[11 + -xclzn - iflg* anl;

99yice1,13 = XA - XBpyg + XCpp - XDpiy; (* Multiply by (iflgsi)? «)

99gic+1,2) = XApzp - XBpap + XCpap - XDpap 7

gg(iml,ln = XA[I] + iflg* XBlzn + —XC[]_]] - iflg * XD(2'; (* Ml.lltiply by (_iflg* 1 > %)

gg(iD+1,2]| = xApl - .iflg* XB(IB + —XCuzn + iflg* XD(I';

Results of a 1024-point FFT accumulate only four rounding errors

from beginning to end of the five “butterfly” passes!

Round-trip Error Measured with RMS

Errors 1000
x 106

800

600

400 -

200

0

Floats

Posits

L] Radix 2 DIF
B Radix 2 DIT
B Radix 4 DIF
B Radix 4 DIT

Posits+Quire

15

16-bit IEEE floats lose far too much information

Round-Trip Error, 16-bit floats

0.0006 12-bit result rounds incorrectly . Scatter plot of

errors of real
I S . . and imaginary
0.0002 "'" O o [£~ (2048

.
@00 CONGT @ CEIDID SOUD 0 000 CODE0S CED G 00000 O BEO D BB O SNMBIeNe ¢ oolme o GOE C CIEN HNE® 00 G D CED 0O SO ® 0 0w O® CEDNED ID 00 ED OB Wese
. © e o ® @ «

LS 7, AL" K, . e kS ..'....... 'I-'........_...:'. . ._.:.'.’ pOlntS).

0.0004fF,

s 00 et o000 S - As007 272000 | osses force

S00002f oSl Tl Ll SR I T use of 32-bit
| ST ' floatsfor
ces pemm B W o me sewes| Sighal

~0.0006 | processing.
| 12-bit result rounds incorrectly

~0.0004} "

—0.0008

16

Round-Trip Errors After Rounding to ADC Accuracy

Posit Float
Percent Percent

Error Error
100 100 96.09

82.08
80 80
60 60
41.16
40 40
20.31
20 20
210 7.23
0 : 000 000 0.00 ADChbit- " - 005 ADC bit-
15 14 13 12 11 10 g resolution resolution
(a) Posits (b) Floats

For 12-bit ADC signals, 16-bit posits with eS = 1 are off by 1 Unit in Last Place

(ULP) for 2.1% of the values, versus 66.7% for floats. But we can do even better.

17

Generalized Posits: New Parameters

e

* Move center of exponent J_—' T
range with eBias. = e

ebias 0 log,(|x|)

* Blunt the tapering by |Accuracy |Accuracy
limiting the maximum __'- -'__ — r- -T
regime to rS bits. T e sl i Tomu(I

* Can allow different rS and Accuracy
eS values for left and right = .
halves of the tent. - T

ebias log,(|x])
18

Can dial from posits to floats!

* Adjust eS and rS in tandem to keep

dynamic range similar. 104
* When rS becomes 2, you get idealized
floats (green block). 1000
: .. . Values
* I[deal rS for a particular application is per
often the original posit definition Binade '«

(magenta triangle), but not always.

10

* Asymmetric option useful when
maximum |x| is known but |/
minimum |x| could be anything.

A Generalized 16-Bit Posit Matched to FFT Needs:

Relative Accuracy, Decimal Digits

Limit regime length to 14
Exponent sizeeS=0
Bias exponent by 22

6000

— Logqp(Ix])
5000 -

4000 - . B

3000 | |]

soool I Only 127 out of 65535 values (0.2%) are
moommmw"m unused (greater than 32) with this format.

-2.5 -2.0 -1.5 -1.0 -0.5 0.0

20

16-bit generalized posits can easily do a lossless FFT

Round-Trip Error, 16-bit floats
0.0006]

s Quire is only

64-bit. Fast.
0.0002 All values round correctly

r_.; TR L BT R T T VO T L IR S|gna| noise

= Y X RO Y :.-.=:-..-=:.-....-:=.-.-.-:..=-..-=:.-..-.:-.-.. ARleS T e,

oL S SB()(Pt s OB et - FE1500° &= ~+2000 reduced by
~0.0002} 10 dB.

—0.0004 - 16 bits suffice.

~0.0006

~0.0008 L

21

SoftPosit vs. SoftFloat speed for FFT data

TN

Q

o) ‘ Measured on Intel®
= 150 I § Posits Xeon® CPU E5-2699
8-. o Floats v4; base frequency 2.2
2 GHz, max Turbo
~ 100 frequency 3.6 GHz
)

= 0S is OpenSUSE 42.2
o (x_86_64)

g 50

o Compiled with Gnu
o

33 gcc 4.8.5,-02,

Ay 0 ‘ architecture “core-

avx2”
‘b’ Q
& N S¥ 2 ’
0 > Q ‘Z
N
S ~ Q,Q QQ

Corroborates Kulisch: Exact dot product is faster than a series of fused multiply-adds.

22

16-bit posits vs 32-bit floats is a clear win

 With 32-bit floats, 1024-point FFT might not fit in cache
 Speed increases by >2x (half the data motion)

* (Cache effects (especially for 2D and 3D FFTs)

 Quire is inherently faster than rounded float multiply-adds
 Power decreases by >2x (data motion dominates the power cost)
* Energy cost (power x time) therefore decreases by >4x.

* Aside: since Finite Impulse Response (FIR) filtering also can use quire,
the same advantage for posits applies.

Summary

16-bit posits suffice for signal processing FFTs.
They can replace 32-bit floats now in use.
Workload is very similar to Machine Learning.
More than 2x power savings, 4x energy savings

Tweaking 16-bit standard posits can yield
lossless FFTs for 12-bit A-to-D convertors.

The key tricks are to use radix 4, normalize by %
on each pass, and use the quire.

Benefits radio astronomy, MRI scans, X-ray
crystallography, 5G networking, etc.

OO

10

00

0

Better Answers.

Fewer Bits.

