
Lossless FFTs with
Posit Arithmetic

Dr. Siew Hoon (Cerlane) Leong, CSCS
Prof. John L. Gustafson, ASU

March 1, 2023

Thesis

Fast Fourier Transforms (FFTs) for signal and image processing
have format needs similar to those for Machine Learning… tent-
shaped distribution bounded above but not below.

16-bit IEEE floats are too lossy to use for FFTs, so 32-bit is used.

16-bit posits are sufficiently accurate that FFTs followed by
inverse FFTs can return the original signal without loss.

FFTs with SoftPosit and SoftFloat allow a fair comparison of the
speed of posits with the speed of floats of the same precision.

2

Typical Discrete Fourier Transform (DFT) Definition

3

𝑋! = #
!"#

$%&

𝑥!𝑒%'()*!/$Forward DFT:

𝑥! =
1
𝑁#

!"#

$%&

𝑋!𝑒,'()*!/$Inverse DFT:

It looks like 𝑂 𝑁! work, but Gauss found a shortcut, the “Fast Fourier Transform.”
Rediscovered by Bell Labs researchers Cooley and Tukey in the early 1960s.

FFTs are the “Achilles Heel” of HPC

• Memory wall: 𝑂 𝑁 log𝑁
operations, but 𝑂 𝑁!/#

data motion

• TOP500 supercomputers
are typically thousands of
times slower at FFTs than
at LINPACK.

• Solution: more info per bit
in the data format!

4

The kernel FFT operation is a “butterfly.”

5

• ”Twiddle factors” 𝑒±"#$%&/(= cos "#&
(+ 𝑖 sin("#&() are often written as 𝑤 for short.

• A radix 2 FFT butterfly takes four multiplies, six add/subtracts in general.
• The radix 4 FFT butterfly is more complicated but uses 10% fewer operations.

Are Lossless FFTs possible with 16-bit formats?

12-bit A-to-D
Convertor (ADC) Input

Bitwise Identical
Output Data?

Forward
FFT

Inverse
FFT

Round to
12 bits

Convert to
16 bits

• We will show that 16-bit IEEE floats cannot do this.
• An “idealized” 16-bit float cannot, either. More on this later.
• Since the 1970s, image and signal processing have had to

use 32-bit floats to prevent severe accuracy loss.
6

What values actually occur in a signal FFT?

A skewed tent-shaped distribution, provably bounded on the right.
7

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
0

1000

2000

3000

4000

5000

6000

7000

Log10(|x|)

Idealized 16-bit floats do not fit FFT distribution.

8

“Idealized” means
• only one NaN value

• only one zero
• largest and smallest

exponent cases are
treated as normal

We tried them all, and
they are all very lossy.

Significant Digits

Dynamic Range

eS=2 13-bit fraction, ~4.2 decimals

¼ 4

eS=5 10-bit fraction, ~3.3 decimals

10510-5

eS=7 8-bit fraction,
~2.7 decimals

101910-19

New Approach Using 16-Bit Posits

12-bit A-to-D
Convertor Input

Bitwise Identical
Output Data?

Forward
FFT

Inverse
FFT

Round to
12 bits

Convert to
16 bits

• Tested 𝑁 = 1024 and 4096 points
• Decimation-in-Time (slightly more accurate)
• Radix 4 (five or six “butterfly” passes)
• Value magnitudes cannot exceed 𝑁 = 32 or 64.

9

Remember the posit “sweet spot”

10

With eS = 1, 16-bit posits have accuracy ≥ 16-bit IEEE
floats for magnitudes 2–6 to 26 (1/64 to 64).

Trick #1: Symmetric DFT stays in posit “sweet spot”

11

𝑋! =
1
𝑁
#
!"#

$%&

𝑥!𝑒%'()*!/$Forward DFT:

𝑥! =
1
𝑁
#
!"#

$%&

𝑋!𝑒,'()*!/$Inverse DFT:

If inputs are in −1, 1 , outputs are in − 𝑁, 𝑁 .

Trick #2: Use radix 4, normalize on each pass.

12

This keeps accuracy in the “sweet spot” and normalizes by ⁄1 𝑁.
Division by 2 is zero cost if you apply it in the “twiddle factor” table.

÷2 ÷2

13

One of the
passes involves
no rounding
from
multiplication;
w is just −1.

Trick #3: Use the quire for the kernel operation

14

Results of a 1024-point FFT accumulate only four rounding errors
from beginning to end of the five “butterfly” passes!

Operations grouped by overbar are exact dot products, then rounded once.

Round-trip Error Measured with RMS

15

Errors
× 106

16-bit IEEE floats lose far too much information

Scatter plot of
errors of real
and imaginary
data (2048
points).

Losses force
use of 32-bit
floats for
signal
processing.

Round-Trip Error, 16-bit floats

12-bit result rounds incorrectly

12-bit result rounds incorrectly

16

Round-Trip Errors After Rounding to ADC Accuracy

17

For 12-bit ADC signals, 16-bit posits with eS = 1 are off by 1 Unit in Last Place
(ULP) for 2.1% of the values, versus 66.7% for floats. But we can do even better.

Generalized Posits: New Parameters

•Move center of exponent
range with eBias.

• Blunt the tapering by
limiting the maximum
regime to rS bits.

• Can allow different rS and
eS values for left and right
halves of the tent.

0

Accuracy

log2(|x|)ebias

Accuracy

log2(|x|)ebias

Accuracy

log2(|x|)ebias

Accuracy

log2(|x|)ebias

18

Can dial from posits to floats!
• Adjust eS and rS in tandem to keep

dynamic range similar.

• When rS becomes 2, you get idealized
floats (green block).

• Ideal rS for a particular application is
often the original posit definition
(magenta triangle), but not always.

• Asymmetric option useful when
maximum |x| is known but
minimum |x| could be anything.

Log10(|x|)

Values
per

Binade

19

A Generalized 16-Bit Posit Matched to FFT Needs:

20

-4 -2 0 2
Log10(|x|)

1

2

3

4

Relative Accuracy, Decimal Digits

-2.5 -2.0 -1.5 -1.0 -0.5 0.0
0

1000

2000

3000

4000

5000

6000

7000

Only 127 out of 65535 values (0.2%) are
unused (greater than 32) with this format.

Limit regime length to 14
Exponent size eS = 0
Bias exponent by 2–2

16-bit generalized posits can easily do a lossless FFT

Quire is only
64-bit. Fast.

Signal noise
reduced by
10 dB.

16 bits suffice.

Round-Trip Error, 16-bit floats

All values round correctly

21

SoftPosit vs. SoftFloat speed for FFT data

22

Corroborates Kulisch: Exact dot product is faster than a series of fused multiply-adds.

Measured on Intel®
Xeon® CPU E5-2699
v4; base frequency 2.2
GHz, max Turbo
frequency 3.6 GHz

OS is OpenSUSE 42.2
(x_86_64)

Compiled with Gnu
gcc 4.8.5, -O2,
architecture ”core-
avx2”

16-bit posits vs 32-bit floats is a clear win

• With 32-bit floats, 1024-point FFT might not fit in cache

• Speed increases by >2× (half the data motion)

• Cache effects (especially for 2D and 3D FFTs)

• Quire is inherently faster than rounded float multiply-adds

• Power decreases by >2× (data motion dominates the power cost)

• Energy cost (power × time) therefore decreases by >4×.

• Aside: since Finite Impulse Response (FIR) filtering also can use quire,
the same advantage for posits applies.

23

Summary
• 16-bit posits suffice for signal processing FFTs.

• They can replace 32-bit floats now in use.

• Workload is very similar to Machine Learning.

• More than 2× power savings, 4× energy savings

• Tweaking 16-bit standard posits can yield
lossless FFTs for 12-bit A-to-D convertors.

• The key tricks are to use radix 4, normalize by ½
on each pass, and use the quire.

• Benefits radio astronomy, MRI scans, X-ray
crystallography, 5G networking, etc.

24

