

Evaluation of the use of Low Precision Floating Point Arithmetic for Applications in Radio Astronomy

Thushara K. Gunaratne – Research Council Officer, Herzberg Astronomy and Astrophysics Research Center, National Research Council Canada 02 March 2023

(c) National Research Council of Canada, 2023

Who We Are....

- Herzberg Astronomy and Astrophysics (HAA) Research Center is part of the National Research Council (NRC) Canada
- Two locations
 - Dominion Astrophysical Observatory (DAO) near Victoria, BC
 - Dominion Radio Astrophysical Observatory (DRAO) near Penticton, BC
- Involved in the design/ implementation/observation of many international optical/radio astronomical observatories
- Employs about 40 radio/optical astronomers and 40 engineers and more

Outline

- Historical use of digital-arithmetic in radio astronomy
- The case for better performance with floating point arithmetic
- Case Study: The Correlator Beamformer for the Square Kilometre Array Phase-1
 - Key processing modules
 - Considered formats
 - Key performance indecies
 - Simulation results
- Conclusion

Historical use of Digital-Arithmetic in Radio Astronomy

- In the beginning the digital correlators used 1-bit (i.e. two-level) representation!
- The ability to integrate for a *longer duration* with minimum interferences facilitated the imaging process for strong sources.
- The *efficiency* achievable with 1-bit quantization is ~67%.
- Corrections have to be applied to properly quantify the signal strengths from different sources.
- With the advancement of digital electronics the number of bits in the samples grew....
 - 3 4 bits in the late 70's
 - 5 8 bits in early 2000's
 - 8 12 bits, state of the art

TALON DX card: supports (9 + 9b) Correlations

The Case for Higher Overall Performance with Floating Point Arithmetic

- Radio astronomers' desire to observe fainter sources with better accuracy
- Increasing strength, bandwidth and occurrence of Radio Frequency Interference (RFI)
 - Quantized strong RFI signals can lead to spectral-confusion
- This requires increase in the sample widths resulting in higher power, area and longer design times
- Input signals are 'Gaussian distributed'; 25 50 % toggle rate
- Straight forward way to handle the increased signal dynamic range → Floats
- Key FPGA/GPU vendors began to support 'native' low-precision floating point formats (e.g. Float16, BFloat16 and BFloat16+ (aka NVIDIA TensorFloat32))

Case Study: Correlator Beamformer for the Square Kilometre Array

 The FX-type TALON frequency-slice architecture has been down selected for the correlator and beamformer (CBF) of the Square Kilometre Array (SKA), mid frequency radio telescope.

- Construction of the phase-1 started in December 2022 in the 'Karoo' region of South Africa.
- It will consisted of 197 dishes with diameters up to 15 m spanning 150 km
- Observes the spectrum 0.35 15.3 GHz with 6 overlapping bands. The maximum instantaneous bandwidth is 5 GHz.
- Facilitates multiple simultaneous observation modes.

Functional Architecture: SKA1 Mid CBF

Key Signal Processing Modules in SKA1 Mid CBF

- Channelizers To segment the input bandwidth into uniform channels
- Tunable Filters To extract a part of the input bandwidth
- ReSamplers To change the sample rate, apply delay corrections
- Complex-mixers To shift the spectrum signals
- Cross Complex Multiply and Accumulator To evaluate auto- and crosscorrelations
- Beamformers To selectively enhance signals depending on their direction of arrival
- 2x2 matrix-multipliers To apply corrections to polarization mismatches

The Considered Low Precision Floating Point Formats

Format	Specs	Minimum	Maximum	Comments	
float16	1S:5E:10M	2 ⁻¹⁴ ≈ 6.1035e-5	65504		
bfloat16	1S:8E:7M	2 ⁻¹²⁶ ≈ 1.1755e-38	3.390e+38	Supported in Intel Agilex Variable Precision DSP Block	
bfloat16+ (NVIDIA TensorFloat32)	1S:8E:10M	2 ⁻¹²⁶ ≈ 1.1755e-38	3.400e+38	I TECISION DOI DIOCK	
posit16	1S:1ES	4 ⁻¹⁴ ≈ 3.7253e-9	4 ¹⁴ ≈ 268,435,456		
fixed19	2's complement	2 ⁻¹⁸ ≈ 3.8147e-6	1-2 ⁻¹⁸ ≈ 0.9999962	Normalized range [-1, 1]	

Qualitative Study: The Frequency Responses of Key Signal Processing Modules

- In terms of the imaging dynamic range, the performance of a radio telescope depends on the ability to suppress the interference from celestial and other sources.
- For the SKA1 Mid telescope, the targeted imaging dynamic range is
 1:1000000
- This translated to > 60 dB suppression of accumulated interferences power
- The integrated stopband attenuation should exceed 60 dB!

Galactic Center of the Milky Way galaxy

MeerKAT 2019

Very Large Array (VLA) 2004

Frequency Responses of the 30 Channel Coarse-Channelizer Represented with float16, bfloat16+, posit16 and fixed19 Format

Applied Scaling Factors				
float16	bfloat16	bfloat16+	posit16	fixed-19
210	210	210	2 ⁶	24

Magnitude Transfer Functions of the Prototype Filter for 30-Channel VCC-OSPPFB Represented with Different Numerical Formats

Frequency Responses of the 16,384 Channel Imaging-Channelizer Represented with float16, bfloat16, bfloat16+, posit16 and fixed19 Formats

Applied Scaling Factors				
float16	bfloat16	bfloat16+	posit16	fixed-19
2 ²⁰	2 ²⁰	2 ²⁰	2 ¹²	2 ¹³

Transfer Function of the Prototype Filter of the Imaging Channelizer Represented with Different Numerical Formats

Frequency Responses of the Tunable Filter for 64-fold Down-Sampling Represented with float16, bfloat16, bfloat16+, posit16 and fixed19 Formats

Applied Scaling Factors				
float16	bfloat16	bfloat16+	posit16	fixed-19
216	2 ¹⁶	2 ¹⁶	28	26

Transfer Function of the Prototype Filter of the Zoom DDC for DSF = 64 Represented with Different Numerical Formats

Frequency Responses of the Fractional Delay Filter of the ReSampler Represented with float16, bfloat16, bfloat16+, posit16 and fixed19 formats

- In ReSamplers, the passband ripple and the group-delay response are of concern.
- Unlike other signal processing block in the signal chain of Mid.CBF passband ripple of the ReSampler can not be calibrated out
- The variations in the group-delay response lead decorrelation and artefacts in the synthesized images.
- In Mid.CBF, a 1024 step fractional-delay filter-bank has been used in the ReSampler
- The maximum passband ripple should be ≤0.005 dB and the maximum error in group delay should *ideally* be ≤0.0005 sample-period (i.e. ≤ 0.5 delay-step)

Frequency Responses of the Fractional Delay Filter of the ReSampler Represented with float16, bfloat16, bfloat16+, posit16 and fixed19 formats

Applied Scaling Factors					
float16	bfloat16+	posit16	fixed-19		
24	24	24	1		

Magnitude and Group Delay Responses of 1024-Step Fractional-Delay Filter

0.1

0.2

0.3

0.4

0.5

 ω / π

0.6

0.7

0.8

0.9

-0.02

0.1

0.2

0.3

0.4

0.5

 ω / π

0.7

0.8

0.9

0.6

Magnitude and Group Delay Responses of 1024-Step Fractional-Delay Filter

Quantitative Study: Key Arithmetic Operations

Multiply and Add (e.g. in FIR filters)

Chain Multiplications (e.g. FFT)

Floating-point Arithmetic 16-bit Half-Precision Mode

*This block diagram shows the functional representation of the DSP block. The pipeline registers are embedded within the various circuits of the DSP block.

Summary

- Vendors are now supporting low-precision floating-point arithmetic in FPGAs and GPUs.
- A preliminary qualitative and quantitative study has been conducted to see whether float16, bfloat16+ and posit16 formats can be used for the implementation of signal processing modules for SKA1 Mid CBF
- For coarse and imaging channelizers and tunable filters, float16, bfloat16+ and posit16 formats are capable of achieving the desired attenuation
- For the ReSampler, the qualitative study is inconclusive on whether it meets the accuracy in delay/phase
- "The quantitative study on the FIR filters implies the float16, bfloat16+ and posit16 are capable of achieving the desired SNR"
- "For FFTs, the data has to be converted for float32 to achieve the desired SNR"

NRC-CNRC

