Verification of Numerical Results, using Posits, Valids, and Qures

Gerd Bohlender, Karlsruhe Institute of Technology

CoNGA – Singapore, March 28, 2018
Outline

• Floating-Point Arithmetic
• Pure vs. Applied Mathematics, Problems
• Posits
• Interval Arithmetic, Valids
• Exact Dot Products, Quires
• Numerical Algorithms with Verified Results
• Conclusion
IEEE Floating-Point Arithmetic

• IEEE Standard 754, issued 1985, revised 2008
• Widely adopted industry standard
• Easier interchange of data and programs
• Exception handling with NaNs etc. has advantages and disadvantages
• Results may differ on different platforms
• Results of algorithms may be unreliable

March 28, 2018
Verification of Numerical Results using Posits, Valids and Quires
Pure vs. Applied Mathematics

• **Pure Mathematics**: for all real numbers x, y, z the associative law $(x+y)+z = x+(y+z)$ holds

• **Applied Mathematics / Computed Results**: x is an *approximate* solution of the given problem with an error *estimation* ϵ – neglecting higher order terms and influence of rounding error

• Strong contrast between these concepts
Problems with Floating-Point Arithmetic

- **Ex. 1:** Evaluate \(p^4 - 4p^2q^2 + q^4 \) for \(p = 665857, q = 470832 \)
 - Result in double precision: \(-3.3554432 \cdot 10^7\)
 - Correct result: \(1\)

- **Ex. 2:** Evaluate sum \(10^{20} + 1 - 10^{20} \)
 - Result in double precision: \(0\)
 - Correct result: \(1\)

- **Ex. 3:** Linear system 2x2, solution requires 7 arithmetic operations
 - All digits of result are **wrong**
Fractal, Influence of Arithmetic

- Identical fractal
- Identical number of steps
- Identical coloring scheme
- Different floating-point formats
- Which graph is better?
Problems with Floating-Point Arithmetic

• Supercomputers don’t solve such trivial problems
• Tianhe-2 has 34 Petaflops – what does this mean?
• Imagine: print all computed values (in small font on both sides of paper)
• Height of pile of paper for one second of calculations ???
Problems with Floating-Point Arithmetic

• Supercomputers don’t solve such trivial problems
• Tianhe-2 has 34 Petaflops – what does this mean?
• Imagine: print all computed values (in small font on both sides of paper)
• Height of pile of paper for one second of calculations ???
• 3.4 million kilometres = 9 x distance from earth to moon !!!
• How reliable are these results? Who can check them?
• Special tools on computer are needed!
Posits, a New Floating-Point Format

• Flexible trade-off between exponent bits (regime + exponent) and mantissa bits
• Higher accuracy than IEEE 754 for numbers close to 1
• Special representation for $\pm \infty$
• No other special cases like NaN, gradual underflow
• Better results in typical applications [Gustafson, Yonemoto]
• However, results may still be unreliable
Valids, Interval Bounds for Values

- Pair of equal-size posits for lower and upper bounds of value, e.g. \(a \in [a_{low}, a_{high}] \)
- Each posit ends in a ubit, indicating closed bounds [] or open bounds () or a mix of both (], [)
- Representation of connected sets of real numbers. These can be closed, open, half-open, bounded, or unbounded.
- Arithmetic for valids is algebraically closed under elementary operations and many standard functions, i.e. for all valids \(A, B \), and all relevant functions \(F, A + B, A - B, A \times B, \frac{A}{B}, F(A) \) are valids
- Calculus is free of exceptions
Naïve Application of Intervals / Valids

• Interval evaluation $F(X)$ of a function $f(x)$: replace all floating-point operations by interval operations

• Usually **overestimates** the range of the function on interval X

 \[
 range(f, X) = \{f(x)|x \in X\}
 \]

• Example: $f(x) = x - x$ ($= 0$), $X = [0,1]$, $range(f, X) = [0,0]$, but $F(X) = [0,1] - [0,1] = [-1,1]$

• **Help:** subdivide interval (under some conditions):

 \[
 F([0, 0.5]) \cup F([0.5,1]) = [-0.5,0.5] \cup [-0.5,0.5] = [-0.5,0.5]
 \]

• Further subdivision: nearly arbitrarily high accuracy

• **But:** higher costs, less efficiency, especially in multidimensional cases
Better Application of Intervals / Valids

- Do **not** compute everything with *valids* – too expensive, too inaccurate
- Transform expressions to form which is better to evaluate
- Avoid (if possible) variables to occur more than once
- Apply *exact dot products / quires* (next slides)
- Use better *algorithms* (next slides)
- Do major part of calculation in *floating-point* and only *remainders* (between exact and computed values) in *interval arithmetic*
Exact Dot Products, Qures

- Generalization of fused multiply and add
- Fused sum \(\sum_{i=1}^{n} a_i \) and fused dot product \(\sum_{i=1}^{n} a_i \times b_i \) computed with only \textbf{one final rounding} for any floating-point numbers / posits \(a_i, b_i \)
- Round result to nearest posit \(p = \text{round} \left(\sum_{i=1}^{n} a_i \times b_i \right) \)
- Round result to enclosing valid \(v = [v_{\text{low}}, v_{\text{high}}] = \text{round} \text{out} \left(\sum_{i=1}^{n} a_i \times b_i \right) \)
- Store intermediate values exactly, e.g.
 \[
 s = \sum_{i=1}^{n} a_i \times b_i , \quad s \text{ exact}
 \]
 \[
 s_1 = \text{round}(s), \quad s_2 = \text{round}(s - s_1)
 \]
 „quadruple precision“ result as sum of two posits
Software and Hardware Solutions for Quires

- Many options available for high performance implementations
- Storage in long **fixed-point accumulator**; pipelined parallelized operation in one clock cycle
- Quires: exact arithmetic operations are much faster than memory access
- Alternative implementations: e.g. **sum and remainder operation** [Bo 1978], [Bo 1990], many recent publications e.g. by [Rump]
Dot Product symbolized by a drawer

- Only **3 words** have to be computed in any accumulation
- Other words may be affected by carries or borrows
- These words are not modified in storage, but **flags** (red / white dots) are used to store this information
Coprocessor XPA 3233 for Exact Dot Products

- Prototypes built in 1995
- Coprocessor for Intel processor
- Faster than conventional non-exact dot products
- Intended as demonstration of technology
- Similar development 2017 presented on ARITH 24 in London [Koenig / Berkeley]
Alternative Implementation of Quire

- Repeated sum with exact remainder [Bo 1978], graphics taken from [Bo 1990]
- $x_1^{(k)}$ converges very quickly to quire result (rounded value of exact sum)
- Pipelining possible
Validated Results of Numerical Algorithms

• Classical numerical algorithms compute *approximations* of result

• Possibly *error estimations*, but no rigorous bounds

• New algorithms should compute
 • Rigorous validated *bounds* for result
 • Proof of *existence* of solution
 • (If possible) proof of *uniqueness* of solution

• This can be achieved using *valids* (interval arithmetic) and *quires* (exact dot products)
Special Algorithms for Valid and Quire

Posit / floating-point evaluation at many points: no certainty about zeroes in range

Valid / interval evaluation: certainty about subintervals not containing zeroes

Global optimization may use this information for fast elimination of regions
Newton Method with Valids

If $N(X)$ is a subset of X, this proves that $f(x)$ has exactly one zero in X
If intersection $N(X) \cap X$ is empty, this proves non-existence of zero
Computation of a sequence X_i of more and more accurate valids containing the exact zero (provided that intersection $N(X) \cap X$ is not empty)
Validated Linear System Solver

• Solve linear system $Ax = b$ with unknown exact solution x^*
• Compute approximate inverse R, approximate solution $x\sim$ using posit arithmetic
• Do not compute an interval inclusion of x^* directly
• But compute an interval inclusion E of the error $e = x^* - x\sim$, using valids, giving much higher accuracy
• Compute residual $r = b - A x\sim$ and sequence of intervals
 $E_{i+1} = (I - R A) E_i + R r$
• Computation of these expressions in conventional floating-point arithmetic could be worthless (cancellation in subtractions!)
• Use valids to obtain interval bounds and quires to achieve high accuracy, then under some conditions $x^* \in x\sim + E_i$ (valid containing result)
Linear System Solver Using Valid and Quire

- \(R = \text{inverse} \ (A) \)
 // posit arithmetic
- \(X^\sim = R \ b, \ B = I - R \ A, \ r = b - A \ X^\sim \)
 // valid and quire
- \(E = R \ r \)
 // valid and quire
- \(Z = E, \ i = 0 \)
 // valid

Repeat
- \(i = i + 1 \)
- \(Y = \text{blow} \ (E, \ \varepsilon) \)
 // valid, make interval wider
- \(E = B \ Y + Z \)
 // valid and quire

Until \(E \) is subset of interior of \(Y \) or \(i = 10 \)
// valid
Interpretation of Result

• All operations can be implemented easily with valids and quires

• Test “E is subset of interior of Y” is easy to perform, some comparisons of bounds with < and > instead of ≤ and ≥

• If E is subset of interior of Y, this is a rigorous proof that
 • The matrix A is not singular
 • The linear system Ax = b has a unique solution
 • The true solution x^* of the linear system is contained in the interval / valid vector $X^\sim + E$

• Otherwise, a more refined algorithm is needed (e.g. Rump method, represent R by value and remainder $R = R_1 + R_2$ using quires); possibly A is singular, i.e. no solution exists
Evaluation of Polynomials and Expressions

- May be transformed in a system of linear equations
- Polynomial evaluation in form of Horner scheme
 \[p(x) = \left(\ldots (a_n \times x + a_{n-1}) \times x + \ldots \right) \times x + a_1 \times x + a_0 \]
- Introduce auxiliary variables
 \[p_n = a_n, \quad p_{n-1} = p_n \times x + a_{n-1}, \ldots, \quad p_0 = p_1 \times x + a_0 \]
- Linear system for unknowns \(p_i \)
- Value of polynomial is \(p(x) = p_0 \)
- Similar transformation for arithmetic expressions
Application, Example Resonances in Turbines

- Imprecise modelling of eigenfrequencies of rotor (in black)
- High precision modelling (in red)
- Turbine exploded in Leipzig (Germany), killing 4 persons and injuring 6
Kulisch’s Book 2013

- Computer arithmetic, mathematical background
- Interval arithmetic
- Design of hardware for e.g. exact dot products / quires
- Numerical algorithms with verified results
- Prof Kulisch will celebrate his 85th birthday in May
Conclusion

- **Posits** bring higher accuracy than IEEE floating-point operations.
- **Valids** add the security of interval operations.
- **Quires** are essential for the solution of linear systems and many other standard problems of mathematics.
- Implementations of valids and quires with highest performance are required, many algorithms and hardware designs are available.
- Extended **programming environments** are required for the formulation of algorithms, e.g. C-XSC.
- **Verified solutions** for applications may require a modification of the underlying model and according new implementation.