Tutorial Lecture:
Advanced Posit Arithmetic

Prof. John L. Gustafson
A*STAR and National University of Singapore

26 March 2019
Decimal Error and Decimal Accuracy

Decimal Error:

$$|\log_{10}(x_{\text{computed}}) - \log_{10}(x_{\text{exact}})| = |\log_{10}(x_{\text{computed}}/x_{\text{exact}})|$$

Decimal Accuracy:

$$\log_{10}(1/\text{Decimal Error}) = -\log_{10}(||\log_{10}(x_{\text{computed}}/x_{\text{exact}})||)$$

Note: Underflow to zero and overflow to infinity commit *infinitely large* decimal errors.
32-bit posits appear ideal for most HPC tasks that presently use 64-bit floats. Properly used, 32-bit posits maintain 8 correct decimals, more than enough accuracy for the *answer*.

Tapered Accuracy Plots: 32-bit
Tapered Accuracy Plots: 16-bit

16-bit posits seems well-suited to signal processing, with more dynamic range than floats. Signals can often be normalized to stay in the “sweet spot” where accuracy is highest.
Decimal Accuracy: Floats versus Posits

<table>
<thead>
<tr>
<th>Size, bits</th>
<th>Float maximum accuracy, bits</th>
<th>Posit maximum accuracy, bits</th>
<th>Posit accuracy advantage</th>
<th>Where posit accuracy is ≥ float accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>N.A.</td>
<td>6</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>16</td>
<td>11</td>
<td>13</td>
<td>0.6 decimals</td>
<td>1/64 to 64</td>
</tr>
<tr>
<td>32</td>
<td>24</td>
<td>28</td>
<td>1.2 decimals</td>
<td>10^{-6} to 10^{6}</td>
</tr>
<tr>
<td>64</td>
<td>53</td>
<td>59</td>
<td>1.8 decimals</td>
<td>1.4×10^{-17} to 7.2×10^{16}</td>
</tr>
</tbody>
</table>
Dynamic Range: Floats versus Posits

<table>
<thead>
<tr>
<th>Size, bits</th>
<th>IEEE Standard float exponent size, bits</th>
<th>Float dynamic range</th>
<th>Draft Standard posit exponent size, bits</th>
<th>Posit dynamic range</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(3)</td>
<td>(1/64 to 16)</td>
<td>0</td>
<td>1/64 to 64</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>6×10⁻⁸ to 7×10⁴</td>
<td>1</td>
<td>3.7×10⁻⁹ to 2.7×10⁸</td>
</tr>
<tr>
<td>32</td>
<td>8</td>
<td>1.4×10⁻⁴⁵ to 3×10³⁸</td>
<td>2</td>
<td>7×10⁻³⁷ to 1.3×10³⁶</td>
</tr>
<tr>
<td>64</td>
<td>11</td>
<td>5×10⁻³²⁴ to 2×10³⁰⁸</td>
<td>3</td>
<td>5×10⁻¹⁵⁰ to 2×10¹⁴⁹</td>
</tr>
</tbody>
</table>
What about fixed-point decimal accuracy?

Fixed point makes sense when you need uniform *absolute* error. The ramp shows how *relative* accuracy is not maximized by using fixed-point.
Flexible size posits

• For any application, examine the histogram of magnitudes.
• Raising p raises the “tent” accuracy plot (and widens it).
• Raising e doubles tent width (and lowers accuracy).
• Software and FPGAs need not follow Draft Posit Standard; you can customize to match the application requirements.
When might floats do better?

• When histogram is skewed to the large or small magnitudes. This can be corrected by rescaling.

• When histogram needs both large and small values at high accuracy, or the histogram looks more like a box than a tent. Hard to correct, but unusual for real applications.
Disadvantages of the posit format

• Fast hardware implementations not yet in conventional CPUs
• Incomplete math libraries for all ps, es sizes (cos, log, etc.)
• Count Leading Zeros (CLZ) operation needed for every input. (Floats need CLZ only for subnormal inputs. Disadvantage applies to software, not hardware.)
• If a computation wanders into very large or very small magnitude numbers, accuracy can be less than for floats.
• A float algorithm that “converges” when a value underflows to zero needs to be altered to work for posits.
The Quire

quire | kwɪ(ə)r |

noun

four sheets of paper or parchment folded to form eight leaves, as in medieval manuscripts.

• any collection of leaves one within another in a manuscript or book.

The quire is based on the Exact Dot Product (EDP) of Ulrich Kulisch and provides a lifeline to exact mathematics. It is a fixed-point 2’s complement format, with one exception value (NaR = 1000⋯000).
Quire sizes for standard posits is $\frac{1}{2} ps^2$

<table>
<thead>
<tr>
<th>Posit size (ps)</th>
<th>es value</th>
<th>Quire size in bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>128</td>
</tr>
<tr>
<td>32</td>
<td>2</td>
<td>512</td>
</tr>
<tr>
<td>64</td>
<td>3</td>
<td>2048</td>
</tr>
</tbody>
</table>

Note that for 32-bit posits, the quire is the same size as a typical cache line, or the SSE data width.

64-bit posits should very rarely be needed. (32-bit posits can replace them in most cases.)

Exact dot products built for 64-bit IEEE floats are less practical; their size is not a power of 2, and they are over 4000 bits long.
Fused operations should never be covert

\[F(x,y) := \sqrt{x^2 - y^2} \]

Compiler tries to improve accuracy by using fused multiply-add:
\begin{align*}
\text{Reg1} &= x^2; \quad // \text{this rounds down half the time.} \\
\text{Reg2} &= \text{Reg1} - y^2; \quad //\text{fused; } y^2 \text{ doesn't round} \\
\text{Return } \sqrt{\text{Reg2}};
\end{align*}

If \text{Reg1} holds a value that was rounded down, \text{Reg1} - y^2 will be negative since \(y^2 \) doesn’t round! So \text{Reg2} is a negative number with no real square root. \text{FAIL}
Quire benefits for matrix multiplication

\[
\begin{pmatrix}
\cdots & \cdots & \cdots \\
& N & \\
\end{pmatrix}
\times
\begin{pmatrix}
\cdots & \cdots & \cdots \\
& N & \\
\end{pmatrix}
= \begin{pmatrix}
\cdot \\
\cdot \\
\cdot \\
\end{pmatrix}
\]

- \(N\) rounding errors per dot product become 1 rounding error.
- If errors are statistically independent, quire is \(\sqrt{N}\) times more accurate.
- For HPC-size problems, this can easily add two decimal places more accuracy.
- BLAS routine SDOT is easily replaced with a quire fused dot product
- For parallel algorithms, use quire for \textbf{partial} summations
Examples of what posits can do

Fluid dynamics, linear algebra, FFTs, neural networks
An independent test by LLNL

- Shock wave passing through initially quiescent L-shaped chamber
- Ideal gas Euler equations

\[
\frac{\partial u}{\partial t} + \nabla \cdot F(u) = 0
\]

\[
\begin{bmatrix}
\rho \\
\rho v \\
\rho E
\end{bmatrix}
\quad \quad \quad
\begin{bmatrix}
\rho v \\
\rho v \otimes v + p \\
\rho v H
\end{bmatrix}
\]

\[
\rho E = \frac{p}{\gamma - 1} + \frac{1}{2} |v|^2 \quad \quad \rho H = \rho E + p
\]

\[
u^n_i = \frac{\Delta t}{\Delta x} \sum_{d=1}^{2} \left[F^{d}_{i+\frac{1}{2}e^d} - F^{d}_{i-\frac{1}{2}e^d} \right]
\]

- Explicit finite volume discretization
- High-resolution Godunov solver

Uniform grid:
512×256 + 256×768 cells
3rd Party Validation of Posits

From Lawrence Livermore National Laboratory, with permission. Simulation of a fluid shock wave in an L-shaped region:

Errors for six different 32-bit formats (white = no error):

- Posits
- Levenstein
- Elias Gamma
- IEEE, but ¼ range
- IEEE floats

Posits are 50x more accurate than floats, the best of any format tested.
They also compared 64-bit floats and posits

“Posits are two orders of magnitude more accurate than floats” — Stephen Lindstrom, LLNL
Challenge: Invert a Hilbert Matrix Numerically

In least-squares curve fitting, \(n \times n \) Hilbert matrices \(H_n \) arise

They’re \textit{brutally} ill-conditioned (nearly singular). This one has a condition number of \(~5 \times 10^5\). The exact inverse is all integers.

\[
H_5 = \begin{bmatrix}
1 & 1/2 & 1/3 & 1/4 & 1/5 \\
1/2 & 1/3 & 1/4 & 1/5 & 1/6 \\
1/3 & 1/4 & 1/5 & 1/6 & 1/7 \\
1/4 & 1/5 & 1/6 & 1/7 & 1/8 \\
1/5 & 1/6 & 1/7 & 1/8 & 1/9 \\
\end{bmatrix}
\]

\[
h_{i,j} = \frac{1}{i+j-1}
\]

Scale both sides by \(5 \times 7 \times 9 = 315 \) so the matrix can be \textbf{expressed exactly} by both floats and posits.

\[
315 \cdot H_5 = \begin{bmatrix}
315. & 157.5 & 105. & 78.75 & 63. \\
157.5 & 105. & 78.75 & 63. & 52.5 \\
105. & 78.75 & 63. & 52.5 & 45. \\
78.75 & 63. & 52.5 & 45. & 39.375 \\
63. & 52.5 & 45. & 39.375 & 35. \\
\end{bmatrix}
\]

Let’s try 32-bit IEEE floats, and then 32-bit posits.
Use LDLᵀ decomposition

Float result has worst-case accuracy of only 3.7 decimals correct:

\[
\text{Float } H_5^{-1} = \begin{bmatrix}
25.0056 \cdots & -300.100 \cdots & 1050.42 \cdots & -1400.62 \cdots & 630.30 \cdots \\
-300.100 \cdots & 4801.79 \cdots & -18907.6 \cdots & 26891.3 \cdots & -12605.4 \cdots \\
1050.42 \cdots & -18907.6 \cdots & 79411.9 \cdots & -117647. \cdots & 56722.9 \cdots \\
-1400.62 \cdots & 26891.3 \cdots & -117647. \cdots & 179270. \cdots & -88234.1 \cdots \\
630.30 \cdots & -12605.4 \cdots & 56722.9 \cdots & -88234.1 \cdots & 44116.5 \cdots
\end{bmatrix}
\]

Worst-case posit accuracy is 6.3 decimals, over 400 times as accurate:

\[
\text{Posit } H_5^{-1} = \begin{bmatrix}
24.999994 \cdots & -299.99992 \cdots & 1049.9998 \cdots & -1400.00003 \cdots & 630.0001 \cdots \\
-299.99992 \cdots & 4799.9993 \cdots & -18900.0009 \cdots & 26880.007 \cdots & -12600.005 \cdots \\
1049.9998 \cdots & -18900.0009 \cdots & 79380.02 \cdots & -117600.06 \cdots & 56700.04 \cdots \\
-1400.00003 \cdots & 26880.007 \cdots & -117600.06 \cdots & 179200.1 \cdots & -88200.08 \cdots \\
630.0001 \cdots & -12600.005 \cdots & 56700.04 \cdots & -88200.08 \cdots & 44100.04 \cdots
\end{bmatrix}
\]

The posit advantage typically far exceeds what you’d expect from having a few extra bits in the fraction (27 bits versus 23 bits, here)
But posits have a secret weapon, the *quire*

Compute the posit inverse times H_5 *exactly*, using the quire. Compare with the identity matrix (i.e., compute the *residual*), and use that as a correction to the original calculation:

$$
\text{Quire-corrected Posit } H_5^{-1} = \begin{bmatrix}
25 & -300 & 1050 & -1400 & 630 \\
-300 & 4800 & -18900 & 26880 & -12600 \\
1050 & -18900 & 79380 & -117600 & 56700 \\
-1400 & 26880 & -117600 & 179200 & -88200 \\
630 & -12600 & 56700 & -88200 & 44100 \\
\end{bmatrix}
$$

Worst-case error is... *zero*. There isn’t any error. That’s the *exact* inverse.

Floats cannot do this, even using double-precision.
An astonishing technique for maximum accuracy

Any expression using $+ \ - \times \ /$ can be written as $Lx = b$ where L is lower triangular and the last x_n is the desired calculation. Example:

$$f = (a + b) \times c - d / e$$

$x_1 = a$
$x_2 = x_1 + b$
$x_3 = c \times x_2$
$x_4 = d$
$e \times x_5 = x_4$
$x_6 = x_3 - x_5$

Solving for x using the quire lets us evaluate $f = x_6$ correctly rounded!
The quire allows “Karlsruhe Accurate Arithmetic.” This removes most of the need for 64-bit format.

- Great for polynomials, even badly-conditioned ones
- Can be done automatically by the compiler.
- “XSC” languages apply this technique, but not to reduce data size.
- Idea: Let user mark the variables that need guaranteed accuracy, instead of applying everywhere.
- 32-bit posit answers can be more accurate than 64-bit float answers.
Posits for Fast Fourier Transforms (FFTs)

- FFTs are very *communication bound*.
- Most efforts (like FFTW) focus on lowest op count.
- More potent approach: reduce the data size by using posit format
Methodology: Measure “round trip” error for 1024-point and 4096-point complex FFTs.

If a format can transform Analog-to-Digital Converter (ADC) signals forward and backward without loss, there is no need for higher precision.
16-bit posits can do this; 16-bit floats cannot.

1024-point
Complex FFT
Round Trip

Floats only get 32% of the original values back
Posits get 98% of the original values back, and any errors are at most one ULP

Float Errors
2297 ULPs

Posits+Quire Errors
63 ULPs
Neural Networks, both Training and Inference

Cifar-10, ConvNet study by RIT (simple 5-layer net, preliminary)

<table>
<thead>
<tr>
<th>Number of bits</th>
<th>Posit Accuracy</th>
<th>Float Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>67.64%</td>
<td>67.93%</td>
</tr>
<tr>
<td>7</td>
<td>67.52%</td>
<td>67.37%</td>
</tr>
<tr>
<td>6</td>
<td>63.77%</td>
<td>46.23%</td>
</tr>
<tr>
<td>5</td>
<td>31.18%</td>
<td>44.85%</td>
</tr>
</tbody>
</table>

Float32 accuracy is 68.45%.
8-bit Float used 3 exponent bits.
Quire was not used for posit results.

From “Deep Positron: A Deep Neural Network Using the Posit Number System,” D. Kudithipudi, J. Gustafson, H. Langroudi, Z. Carmichael

This shows why fixed-point is not the best choice.
Summary

• Posits can fix float shortcomings, for AI and HPC:
 • Taper the accuracy for more info-per-bit.
 • Simplify exceptions, rounding, unused features
 • Match dynamic range to application needs
 • Make the exact dot product practical
 • Restore associative, distributive laws
 • Make calculations bitwise-reproducible
 • Faster; reduces communication costs
 • More accurate, especially if the quire is used
 • Lower energy and power
 • Less chip area
End of Advanced Posit Tutorial Lecture