Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers

John L. Gustafson, Marco Cococcioni, <u>Federico Rossi</u>, Emanuele Ruffaldi and Sergio Saponara

Federico Rossi – CoNGA 2023

Introduction

- Real numbers have been represented with a scientific notation for nearly a century
 - An integer for the significand
 - An integer for the exponent
- IEEE754 standard has been the guidance for this notation
- This notation heavily impacts the hardware that executes twoinput arithmetic operations
- In this work we tried to overcome this difficulties

Posit numbers

- A number in the posit format is *n* bits length, with $n \ge 2$
- It only holds two exceptions: 0 and Not a Real (NaR)
- It can be configured in the number of bits *n* and maximum exponent bits *es*

$$r = (1 - 3s + f) \times 2^{(1 - 2s) \times (2^{es}k + e + s)}.$$

313029282726252423222120191817161514131211109876543210

s	Regime k	Exponent e	Fraction f
---	------------	--------------	--------------

Standard two-input arithmetic

\mathbf{Posit}	Value	\mathbf{Posit}	Value
1000	NaR	0000	0
1 001	-4	0 001	1/4
1010	-2	<mark>001</mark> 0	1/2
1 011	-3/2	<mark>0</mark> 011	3/4
1100	-1	<mark>01</mark> 00	1
1 101	-3/4	0 101	3/2
1 110	-1/2	0 110	2
1 111	-1/4	0111	4

- Simple example: Posit<4,0> format
- We have 16 different configurations
- The mapping between the bit configuration and the value is *bijective*
- The mapping is also monotone if we consider bit configurations as 2's complement signed integers

Standard two-input arithmetic

×	1/4	1/2	3/4	1	3/2	2	4
1/4	1/16	1/8	3/16	1/4	3/8	1/2	1
1/2	1/8	1/4	3/8	1/2	3/4	1	2
3/4	3/16	3/8	9/16	3/4	9/8	3/2	3
1	1/4	1/2	3/4	1	3/2	2	4
3/2	3/8	3/4	9/8	3/2	9/4	3	6
2	1/2	1	3/2	2	3	4	8
4	1	2	3	4	6	8	16

- Multiplication table for Posit<4,0>
- We ignore negative values for symmetry
- Since multiplication is commutative the table is symmetric

Standard two-input algorithm

- 1. Test for exceptional cases
- 2. Decode each input into significand and exponent, both stored as signed integers 4
- 3. Use logic circuits to implement the binary operation (e.g. addition, subtraction etc...)
- 4. Encode the result into the appropriate format, rounding and normalizing the ouput of step 3.

Motivation

- The input decoding and output normalization phase are costly
- Depending on the format, several special cases must be tested during both decoding and normalization
- Several logic levels between input and output can increase latency of the overall arithmetic circuit
- Our idea: transform input operands so that two-input arithmetic does not need decoding but only integer arithmetic (= sum of integer numbers).

Core idea for decoding free arithmetic

- Map each integer value of the input operands to another space of integer values
- Chose the mapping so that sum in the new space can be reversely mapped to the correspondent binary operation in the original space
- Example: instead of multiplying two values *a*, *b* map them to *a*', *b*' so that *a*' + *b*' can be reversely mapped to *a* * *b*, without decoding a and b.

Mathematical background

- Start from X, Y two finite sets of real numbers.
- X* and Y* are the sets of bits strings that digitally encode X and Y. The mapping between X, X* and Y, Y* is bijective, as seen before.
- ∇ is any binary operation between an element of X and an element of Y
- Z is the set of real values $z_{ij} = x_i \nabla y_j$
- \hat{Z} is the set of real values obtained from the rounding of z_{ij} to obtain representable values in X and Y.

Mathematical background

- L^x and L^y are ordered sets of natural numbers
- Suppose we have a bijective f_x that maps X into L^x and f_y Y to L^y (through their encoded X^* and Y^* sets)
- Each x is uniquely mapped to a value in L^x (the same for y,Ly)
- L^z is the set of all distinct sums between L^x and L^y and fz is the mapping between L^z and Z

Mathematical background

• We must ensure that for any pair xi,yj and xp,yq whose binary operation results differ we have

$$L_i^x + L_j^y \neq L_p^x + L_q^y$$

• If this holds we obtain the relation representing our method:

$$z_{i,j} = x_i \nabla y_j = f^z (f^x(x_i) + f^y(y_j))$$

Overview

Obtaining the mapping

- When choosing the mapping we must enforce the requirement that different results are mapped into different sums in Lz (but not necessarily the opposite).
- The idea is to set-up an integer programming problem to solve this assignment.
- If we can provide an initial feasible solution to the problem, under the right assumptions, we can state that we always have an optimal solution for it.

General Problem

$$\begin{array}{ll} \min & \sum_{i} L_{i}^{x} + \sum_{j} L_{j}^{y} \\ \text{s.t.} & L_{1}^{x} \geq 0 \\ & L_{1}^{y} \geq 0 \\ & L_{i_{1}}^{x} \neq L_{i_{2}}^{x} & \forall i_{1} \neq i_{2} \\ & L_{j_{1}}^{y} \neq L_{i_{2}}^{y} & \forall j_{1} \neq j_{2} \\ & L_{i}^{x} + L_{j}^{y} \neq L_{p}^{x} + L_{q}^{y} & \forall i, j, p, q \text{ s.t. } x_{i} \nabla y_{j} \neq x_{p} \nabla y_{q} \\ & L_{i}^{x}, L_{j}^{y} \in \mathbb{Z} & \forall i, \forall j \end{array}$$

Monotonic and commutative operations

$$\begin{array}{ll} \min & \sum_{i} L_{i}^{x} + \sum_{j} L_{j}^{y} \\ \text{s.t.} & L_{1}^{x} \geq 0 \\ & L_{1}^{y} \geq 0 \\ & L_{i}^{x} \geq L_{j}^{x} + 1 \quad i > j \\ & L_{i}^{y} \geq L_{j}^{y} + 1 \quad i > j \\ & L_{i}^{x} + L_{j}^{y} = L_{j}^{x} + L_{i}^{y} \quad \forall i, \forall j \\ & L_{i}^{x} + L_{j}^{y} + 1 \leq L_{p}^{x} + L_{q}^{y} \quad \forall i, j, p, q \text{ s.t. } x_{i} \forall y_{j} < x_{p} \forall y_{q} \\ & L_{i}^{x}, L_{j}^{y} \in \mathbb{Z} \qquad \forall i, \forall j \end{array}$$

]

Application to *Posit*(4,0)

- We apply the method presented until now to a 4-bit posit, for simplicity
- We consider the four arithmetic operations $+, -, \times, /$
- We consider the strategies for the solution (i.e. ordering of the resulting Lx, Ly sets)
- We evaluate the result, comparing it to a traditional 2D look-up table

Strategies for solution

 L^x L^y SUMIncreasingIncreasingMULIncreasingIncreasingSUBDecreasingIncreasingDIVIncreasingDecreasing

Optimal problem solution

Multiplication Example

- Let us take the multiplication results
- We have 3 ordered sets of real numbers

•
$$X = Y = \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2, 4\}$$

•
$$\hat{Z} = \{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2, 4\}$$

- 3 ordered sets of natural numbers
 - Lx = {0, 2, 3, 4, 5, 6, 8}
 - Ly = {0, 2, 3, 4, 5, 6, 8}
 - Lz = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16}

Multiplication Example

$egin{array}{ccc} z_{i,j} & \hat{z}_{i,j} \end{array}$	$L^z_{i,j}$	L_k^z	w_k
	$(=L_i^x + L_j^y)$		
$1/16 \ 1/4$	0	0	1/4
1/8 1/4	2	2	1/4
1/8 1/4	2		
3/16 1/4	3	3	1/4
3/16 1/4	3		
$1/4 \ 1/4$	4	4	1/4
1/4 1/4	4		
1/4 1/4	4		
3/8 1/4	5	5	1/4
3/8 1/4	5		
3/8 1/4	5		
3/8 1/4	5		
$1/2 \ 1/2$	6	6	1/2
$1/2 \ 1/2$	6		
$1/2 \ 1/2$	6		
1/2 1/2	6		-
9/16 1/2	6		

- We have also the correspondence table from L^z to z built using the previous sets
- A group in the table corresponds to a single mapping entry (in bold)

Multiplication Example – at work!

x_i	L_i^x	y_{j}	L_i^y	$L^{oldsymbol{z}}_{i,j}$	$z_{i,j}$	$\hat{z}_{i,j}$		
			5	$(=L_i^x + L_j^y)$	$(=x_i \times y_j))$	$(= \mathtt{cast}(x_i imes y_j)$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$L^z_{i,j}$
							($(=L_i^x + L_j^y)$
$\frac{1}{2}$	2	$\frac{1}{4}$	0	2	$\frac{1}{8}$	$\frac{1}{4}$	1/16 1/4	0
							1/8 1/4	2
							1/8 1/4	2
$\frac{1}{2}$	2	$\frac{1}{2}$	2	4	$\frac{1}{4}$	$\frac{1}{4}$	<mark>3/16</mark> 1/4	3
2		2			4	7	<mark>3/16</mark> 1/4	3
							1/4 1/4	4
$\frac{1}{2}$	2	$\frac{3}{4}$	3	5	$\frac{3}{2}$	$\frac{1}{4}$	1/4 1/4	4
2		4		-	8	4	1/4 $1/4$	4
							3/8 1/4	5
<u>1</u>	2	3	5	7	<u>3</u>	<u>3</u>	3/8 1/4	5
2	-	2	0	•	4	4	3/8 1/4	5
							3/8 1/4	5
1	2	2	6	8	1	1	$1/2 \ 1/2$	6
$\overline{2}$	2	2	0	0	I	I	$1/2 \ 1/2$	6
							$ 1/2 \ 1/2$	6
1	0	4	0	10	0	0	$ 1/2 \ 1/2$	6
$\frac{1}{2}$	2	4	8	10	2	2	9/16 1/2	6

20	102	172
50/	05,	125

 $L_k^z w_k$

 $\begin{array}{c|c} 0 & 1/4 \\ \hline 2 & 1/4 \end{array}$

3 1/4

 $4 \ 1/4$

 $5 \ 1/4$

 $6 \ 1/2$

Evaluation of results

- We compare our solution to a typical 2D look-up table
- This table is indexed by the 4 bits of the Posit4,0 encoding integer, therefore it has $2^{2*4} = 256$ entries
- Each entry contains the result, therefore it holds 4 bits.
- In total the 2D LUT occupies 1024 bits at most

Quality metrics

	Total gate count AND-OR for each operation for $Posit(4,0)$.						
	Total gates	Total gates	Total gates	Grand	Grand total gates	Gate	
	for L^x	for L^y	for L^z	total gates	of the naïve solution	reduction	
+	10	10	11	31	138	$4.4 \times$	
×	7	7	9	23	138	$6 \times$	
_	8	5	5	18	138	7.6 imes	
/	7	7	9	23	138	$6 \times$	

Conclusions

- We presented a method to perform two-input arithmetic without decoding the operands
- We proposed a general integer programming model that solves the problem of producing mapping for operands and result
- We applied the method to a Posit4,0 format
- We compared a logic synthesis of the obtained mapping against a 2D Look-Up table, being able to reduce logic gates up to 7 times

THANKS

Contacts: federico.rossi@ing.unipi.it

