
Decoding-free Two-Input Arithmetic
for Low-Precision Real Numbers

John L. Gustafson, Marco Cococcioni, Federico Rossi, Emanuele
Ruffaldi and Sergio Saponara

Federico Rossi – CoNGA 2023

Introduction

• Real numbers have been represented with a scientific notation
for nearly a century
• An integer for the significand
• An integer for the exponent

• IEEE754 standard has been the guidance for this notation
• This notation heavily impacts the hardware that executes two-

input arithmetic operations
• In this work we tried to overcome this difficulties

30/03/23 Federico Rossi – CoNGA 2023 2

Posit numbers

• A number in the posit format is n bits length, with 𝑛 ≥ 2
• It only holds two exceptions: 0 and Not a Real (NaR)
• It can be configured in the number of bits n and maximum

exponent bits es

30/03/23 Federico Rossi – CoNGA 2023 3

Standard two-input arithmetic

• Simple example: Posit<4,0> format
• We have 16 different configurations
• The mapping between the bit

configuration and the value is bijective
• The mapping is also monotone if we

consider bit configurations as 2’s
complement signed integers

30/03/23 Federico Rossi – CoNGA 2023 4

Standard two-input arithmetic

• Multiplication table for Posit<4,0>
• We ignore negative values for

symmetry
• Since multiplication is commutative

the table is symmetric

30/03/23 Federico Rossi – CoNGA 2023 5

Standard two-input algorithm

1. Test for exceptional cases
2. Decode each input into signficand and exponent, both

stored as signed integers ⚠
3. Use logic circuits to implement the binary operation (e.g.

addition, subtraction etc…)
4. Encode the result into the appropriate format, rounding and

normalizing the ouput of step 3.

30/03/23 Federico Rossi – CoNGA 2023 6

Motivation

• The input decoding and output normalization phase are costly
• Depending on the format, several special cases must be tested

during both decoding and normalization
• Several logic levels between input and output can increase

latency of the overall arithmetic circuit

• Our idea: transform input operands so that two-input
arithmetic does not need decoding but only integer arithmetic
(= sum of integer numbers).

30/03/23 Federico Rossi – CoNGA 2023 7

Core idea for decoding free arithmetic

• Map each integer value of the input operands to another
space of integer values
• Chose the mapping so that sum in the new space can be

reversely mapped to the correspondent binary operation in the
original space
• Example: instead of multiplying two values 𝑎, 𝑏 map them to
𝑎’, 𝑏’ so that 𝑎’ + 𝑏’ can be reversely mapped to 𝑎 ∗ 𝑏, without
decoding a and b.

30/03/23 Federico Rossi – CoNGA 2023 8

Mathematical background

• Start from 𝑋, 𝑌 two finite sets of real numbers.
• 𝑋∗ and 𝑌∗ are the sets of bits strings that digitally encode X and

Y. The mapping between 𝑋, 𝑋∗ and 𝑌, 𝑌∗ is bijective, as seen
before.
• ▽ is any binary operation between an element of X and an

element of Y
• Z is the set of real values 𝑧"# = 𝑥" ▽ 𝑦#
• 0𝑍 is the set of real values obtained from the rounding of 𝑧"# to

obtain representable values in 𝑋 and 𝑌.

30/03/23 Federico Rossi – CoNGA 2023 9

Mathematical background

• 𝐿$ and 𝐿% are ordered sets of natural numbers
• Suppose we have a bijective 𝑓$ that maps X into 𝐿$ and 𝑓% Y to
𝐿% (through their encoded 𝑋∗ and 𝑌∗ sets)
• Each x is uniquely mapped to a value in 𝐿$ (the same for y,Ly)
• 𝐿& is the set of all distinct sums between 𝐿$ and 𝐿% and fz is the

mapping between 𝐿& and Z

30/03/23 Federico Rossi – CoNGA 2023 10

Mathematical background

• We must ensure that for any pair xi,yj and xp,yq whose binary
operation results differ we have

𝐿"$ + 𝐿#
% ≠ 𝐿'$ + 𝐿(

%

• If this holds we obtain the relation representing our method:

30/03/23 Federico Rossi – CoNGA 2023 11

Overview

30/03/23 Federico Rossi – CoNGA 2023 12

Obtaining the mapping

• When choosing the mapping we must enforce the requirement
that different results are mapped into different sums in Lz (but not
necessarily the opposite).

• The idea is to set-up an integer programming problem to solve
this assignment.
• If we can provide an initial feasible solution to the problem,

under the right assumptions, we can state that we always have
an optimal solution for it.

30/03/23 Federico Rossi – CoNGA 2023 13

General Problem

30/03/23 Federico Rossi – CoNGA 2023 14

Monotonic and commutative operations

30/03/23 Federico Rossi – CoNGA 2023 15

Application to 𝑃𝑜𝑠𝑖𝑡 4,0

• We apply the method presented until now to a 4-bit posit, for
simplicity
• We consider the four arithmetic operations +,−,×,/
• We consider the strategies for the solution (i.e. ordering of the

resulting Lx, Ly sets)
• We evaluate the result, comparing it to a traditional 2D look-up

table

30/03/23 Federico Rossi – CoNGA 2023 16

Strategies for solution

30/03/23 Federico Rossi – CoNGA 2023 17

Optimal problem solution

30/03/23 Federico Rossi – CoNGA 2023 18

Multiplication Example

• Let us take the multiplication results
• We have 3 ordered sets of real numbers
• 𝑋 = 𝑌 = {!" ,

!
,
$
" , 1,

$
, 2,4}

• *𝑍 = {!" , ½,¾, 1, 3/2, 2, 4}

• 3 ordered sets of natural numbers
• Lx = {0, 2, 3, 4, 5, 6, 8}
• Ly = {0, 2, 3, 4, 5, 6, 8}
• Lz = {0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16}

30/03/23 Federico Rossi – CoNGA 2023 19

Multiplication Example

• We have also the correspondence
table from 𝐿% to z built using the
previous sets
• A group in the table corresponds

to a single mapping entry (in bold)

30/03/23 Federico Rossi – CoNGA 2023 20

Multiplication Example – at work!

30/03/23 Federico Rossi – CoNGA 2023 21

Evaluation of results

• We compare our solution to a typical 2D look-up table
• This table is indexed by the 4 bits of the Posit4,0 encoding

integer, therefore it has 2)∗* = 256 entries
• Each entry contains the result, therefore it holds 4 bits.
• In total the 2D LUT occupies 1024 bits at most

30/03/23 Federico Rossi – CoNGA 2023 22

Quality metrics

30/03/23 Federico Rossi – CoNGA 2023 23

Conclusions

• We presented a method to perform two-input arithmetic
without decoding the operands
• We proposed a general integer programming model that

solves the problem of producing mapping for operands and
result
• We applied the method to a Posit4,0 format
• We compared a logic synthesis of the obtained mapping

against a 2D Look-Up table, being able to reduce logic gates
up to 7 times

30/03/23 Federico Rossi – CoNGA 2023 24

30/03/23 Federico Rossi – CoNGA 2023 25

THANKS
Contacts: federico.rossi@ing.unipi.it

mailto:federico.rossi@ing.unipi.it

