Decoding-free Two-Input Arithmetic for Low-Precision Real Numbers

John L. Gustafson, Marco Cococcioni, Federico Rossi, Emanuele Ruffaldi and Sergio Saponara

Introduction

- Real numbers have been represented with a scientific notation for nearly a century
- An integer for the significand
- An integer for the exponent
- IEEE754 standard has been the guidance for this notation
- This notation heavily impacts the hardware that executes twoinput arithmetic operations
- In this work we tried to overcome this difficulties

Posit numbers

- A number in the posit format is n bits length, with $n \geq 2$
- It only holds two exceptions: 0 and Not a Real (NaR)
- It can be configured in the number of bits n and maximum exponent bits es

$$
r=(1-3 s+f) \times 2^{(1-2 s) \times\left(2^{e s} k+e+s\right)}
$$

Standard two-input arithmetic

Posit Value Posit			
1000	NaR	0000	0
1001	-4	0001	$1 / 4$
1010	-2	0010	$1 / 2$
1011	$-3 / 2$	0011	$3 / 4$
1100	-1	0100	1
1101	$-3 / 4$	0101	$3 / 2$
1110	$-1 / 2$	0110	2
1111	$-1 / 4$	0111	4

- Simple example: Posit<4,0> format
- We have 16 different configurations
- The mapping between the bit configuration and the value is bijective
- The mapping is also monotone if we consider bit configurations as 2's complement signed integers

Standard two-input arithmetic

\times	$1 / 4$	$1 / 2$	$3 / 4$	1	$3 / 2$	2	4
$1 / 4$	$1 / 16$	$1 / 8$	$3 / 16$	$1 / 4$	$3 / 8$	$1 / 2$	1
$1 / 2$	$1 / 8$	$1 / 4$	$3 / 8$	$1 / 2$	$3 / 4$	1	2
$3 / 4$	$3 / 16$	$3 / 8$	$9 / 16$	$3 / 4$	$9 / 8$	$3 / 2$	3
1	$1 / 4$	$1 / 2$	$3 / 4$	1	$3 / 2$	2	4
$3 / 2$	$3 / 8$	$3 / 4$	$9 / 8$	$3 / 2$	$9 / 4$	3	6
2	$1 / 2$	1	$3 / 2$	2	3	4	8
4	1	2	3	4	6	8	16

- Multiplication table for Posit<4,0>
- We ignore negative values for symmetry
- Since multiplication is commutative the table is symmetric

Standard two-input algorithm

1. Test for exceptional cases
2. Decode each input into signficand and exponent, both stored as signed integers
3. Use logic circuits to implement the binary operation (e.g. addition, subtraction etc...)
4. Encode the result into the appropriate format, rounding and normalizing the ouput of step 3.

Motivation

- The input decoding and output normalization phase are costly
- Depending on the format, several special cases must be tested during both decoding and normalization
- Several logic levels between input and output can increase latency of the overall arithmetic circuit
- Our idea: transform input operands so that two-input arithmetic does not need decoding but only integer arithmetic (= sum of integer numbers).

Core idea for decoding free arithmetic

- Map each integer value of the input operands to another space of integer values
- Chose the mapping so that sum in the new space can be reversely mapped to the correspondent binary operation in the original space
- Example: instead of multiplying two values a, b map them to a^{\prime}, b^{\prime} so that $a^{\prime}+b^{\prime}$ can be reversely mapped to $a * b$, without decoding a and b.

Mathematical background

- Start from X, Y two finite sets of real numbers.
- X^{*} and Y^{*} are the sets of bits strings that digitally encode X and Y. The mapping between X, X^{*} and Y, Y^{*} is bijective, as seen before.
- ∇ is any binary operation between an element of X and an element of Y
- Z is the set of real values $z_{i j}=x_{i} \nabla y_{j}$
- \hat{Z} is the set of real values obtained from the rounding of $z_{i j}$ to obtain representable values in X and Y.

Mathematical background

- L^{x} and L^{y} are ordered sets of natural numbers
- Suppose we have a bijective f_{x} that maps X into L^{x} and $f_{y} Y$ to L^{y} (through their encoded X^{*} and Y^{*} sets)
- Each x is uniquely mapped to a value in L^{x} (the same for y, Ly)
- L^{z} is the set of all distinct sums between L^{x} and L^{y} and fz is the mapping between L^{Z} and Z

Mathematical background

- We must ensure that for any pair xi,yi and xp,yq whose binary operation results differ we have

$$
L_{i}^{x}+L_{j}^{y} \neq L_{p}^{x}+L_{q}^{y}
$$

- If this holds we obtain the relation representing our method:

$$
z_{i, j}=x_{i} \nabla y_{j}=f^{z}\left(f^{x}\left(x_{i}\right)+f^{y}\left(y_{j}\right)\right)
$$

Overview

Obtaining the mapping

- When choosing the mapping we must enforce the requirement that different results are mapped into different sums in Lz (but not necessarily the opposite).
- The idea is to set-up an integer programming problem to solve this assignment.
- If we can provide an initial feasible solution to the problem, under the right assumptions, we can state that we always have an optimal solution for it.

General Problem

min $\sum_{\mu} u+\Sigma_{\varphi}^{u}$
s.t.

$$
\begin{array}{rlrl}
L_{1}^{x} & \geq 0 & & \\
L_{1}^{y} & \geq 0 & & \\
L_{i_{1}}^{x} & \neq L_{i_{2}}^{x} & & \forall i_{1} \neq i_{2} \\
L_{j_{1}}^{y} \neq L_{i_{2}}^{y} & & \forall j_{1} \neq j_{2} \\
L_{i}^{x}+L_{j}^{y} & \neq L_{p}^{x}+L_{q}^{y} & & \forall i, j, p, q \text { s.t. } x_{i} \nabla y_{j} \neq x_{p} \nabla y_{q} \\
L_{i}^{x}, L_{j}^{y} & \in \mathbb{Z} & & \forall i, \forall j
\end{array}
$$

Monotonic and commutative operations

$$
\begin{array}{rlrl}
\min & \sum_{i} L_{i}^{x}+\sum_{j} L_{j}^{y} & & \\
\text { s.t. } & L_{1}^{x} & \geq 0 & \\
L_{1}^{y} & \geq 0 & & \\
L_{i}^{x} & \geq L_{j}^{x}+1 & & i>j \\
L_{i}^{y} & \geq L_{j}^{y}+1 & & i>j \\
L_{i}^{x}+L_{j}^{y} & =L_{j}^{x}+L_{i}^{y} & \forall i, \forall j \\
L_{i}^{x}+L_{j}^{y}+1 & \leq L_{p}^{x}+L_{q}^{y} & \forall i, j, p, q \text { s.t. } x_{i} \nabla y_{j}<x_{p} \nabla y_{q} \\
L_{i}^{x}, L_{j}^{y} & \in \mathbb{Z} & & \forall i, \forall j
\end{array}
$$

Application to Posit $\langle 4,0\rangle$

- We apply the method presented until now to a 4-bit posit, for simplicity
- We consider the four arithmetic operations,,$+- \times, /$
- We consider the strategies for the solution (i.e. ordering of the resulting Lx, Ly sets)
- We evaluate the result, comparing it to a traditional 2D look-up table

Strategies for solution

$L^{x} \quad L^{y}$
 SUM Increasing Increasing
 MUL Increasing Increasing SUB Decreasing Increasing DIV Increasing Decreasing

Optimal problem solution

operation L^{x}
L^{y} +
\times
\times $\{0,1,2,3,5,6,11\}\{0,1,2,3,5,6,11\}$ $\{0,2,3,4,5,6,8\} \quad\{0,2,3,4,5,6,8\}$
-
-
$/$$\{0,1,2,3,5,6,7\} \quad\{15,14,13,12,10,8,3,4,5,6,8\} \quad\{8,6,5,4,3,2,0\}$

Multiplication Example

- Let us take the multiplication results
- We have 3 ordered sets of real numbers
- $X=Y=\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1, \frac{3}{2}, 2,4\right\}$
- $\hat{z}=\left\{\frac{1}{4}, 1 / 2,3 / 4,1,3 / 2,2,4\right\}$
- 3 ordered sets of natural numbers
- $L x=\{0,2,3,4,5,6,8\}$
- $\mathrm{Ly}=\{0,2,3,4,5,6,8\}$
- $\operatorname{Lz}=\{0,2,3,4,5,6,7,8,9,10,11,12,13,14,16\}$

Multiplication Example

$z_{i, j} \quad \hat{z}_{i, j}$	${ }_{i}^{x}+$	$\begin{array}{ll} L_{k}^{z} & w_{k} \end{array}$
1/16 1/4	0	$01 / 4$
1/8 1/4	2	$21 / 4$
1/8 $1 / 4$	2	
3/16 1/4	3	$31 / 4$
$3 / 161 / 4$	3	
1/4 1/4	4	$41 / 4$
$1 / 4 \quad 1 / 4$	4	
$1 / 4 \quad 1 / 4$	4	
$3 / 8 \quad 1 / 4$	5	$51 / 4$
$3 / 81 / 4$	5	
$3 / 8 \quad 1 / 4$	5	
$3 / 8 \quad 1 / 4$	5	
$1 / 21 / 2$	6	$61 / 2$
$1 / 21 / 2$	6	
$1 / 21 / 2$	6	
$1 / 21 / 2$	6	
9/16 1/2	6	

- We have also the correspondence table from L^{z} to z built using the previous sets
- A group in the table corresponds to a single mapping entry (in bold)

Multiplication Example - at work!

$x_{i} L_{i}^{x} y_{j} L_{j}$				$\left.\begin{array}{c} L_{i, j}^{z} \\ \left(=L_{i}^{x}+L_{j}^{y}\right) \end{array} \begin{array}{c} z_{i, j} \\ \left(=x_{i} \times y_{j}\right) \end{array}\right) \begin{gathered} \hat{z}_{i, j} \\ \left(=\operatorname{cast}\left(x_{i} \times y_{j}\right)\right. \end{gathered}$			$z_{i, j}^{z_{i, j}} \hat{z}_{\left(=L_{i}^{x}+L_{j}^{z}\right)}^{L_{k}^{z}} L_{k}^{z} w_{k}$			
	2	$\frac{1}{4}$		2	$\frac{1}{8}$	$\frac{1}{4}$	1/16 1/4	0	$01 / 4$	
				1/8 1/4			2	$21 / 4$		
	2		2		4	$\frac{1}{4}$	$\frac{1}{4}$	1/8 1/4	2	
			3/16 1/4	3				$31 / 4$		
			3/16 1/4	3						
	2	$\frac{3}{4}$			5	$\frac{3}{8}$	$\frac{1}{4}$	1/4 1/4		$41 / 4$
								1/4 1/4	4	
			1/4 1/4					4		
			5	7	$\frac{3}{4}$	$\frac{3}{4}$	3/8 1/4	5	$51 / 4$	
	2	$\frac{3}{2}$					$3 / 81 / 4$	5		
							$3 / 81 / 4$	5		
							$3 / 81 / 4$	5		
	2		6	8	1	1	1/2 1/2	6	$61 / 2$	
			$1 / 21 / 2$				6			
			1/2 1/2				6			
								$1 / 21 / 2$	6	
$\frac{1}{2}$	2	4		8	10	2	2	9/16 1/2	6	

Evaluation of results

- We compare our solution to a typical 2D look-up table
- This table is indexed by the 4 bits of the Posit 4,0 encoding integer, therefore it has $2^{2 * 4}=256$ entries
- Each entry contains the result, therefore it holds 4 bits.
- In total the 2D LUT occupies 1024 bits at most

Quality metrics

Total gate count AND-OR for each operation for $\operatorname{Posit}\langle 4,0\rangle$.

Total gates Total gates Total gates | + |
| :---: |
| + |
| \times | \square 7 8 $7 \quad 7$

for L^{z} Grand Grand total gates Gate
total gates of the naïve solution total gates of the naïve solution reduction
31

23 138
138
138
138
18
23

Conclusions

- We presented a method to perform two-input arithmetic without decoding the operands
- We proposed a general integer programming model that solves the problem of producing mapping for operands and result
- We applied the method to a Posit4,0 format
- We compared a logic synthesis of the obtained mapping against a 2D Look-Up table, being able to reduce logic gates up to 7 times

THANKS

Contacts: federico.rossi@ing.unipi.it

