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The Dark Ages of Floating-Point Arithmetic
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1950s: John von Neumann opposes floating-point hardware, 
saying it would lead to lazy ignorance of rounding errors.

1960s: IBM use a base-16 float format with severe “wobbling 
accuracy.”

No vendor even guaranteed that plus-minus-times-divide 
would produce correctly-rounded results!

“Single-precision” meant 36-bit, until IBM’s 32-bit System/360 
took over the market for computers (1965)



Float formats were all over the map. It was a zoo.

3

Vendors liked the “lock-in” effect.
The significand and exponent sign 
bits could be anywhere.
Base-2, base-8, base-10, base-16

Different exponent sizes for the 
same number of total bits
No one even expected portability.

See: http://quadibloc.com/comp/cp0201.htm



A computer in a hospital?? Are you crazy?
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1961: A cardiologist in Iowa wants to put
a computer in Methodist Hospital.

No private hospital then had a computer.
He says a computer could monitor EKGs,
manage patient meals,… endless uses.

1963: He goes to IBM NY to close the deal.

His 8-year-old son asks, “Can I come?”
and his parents say, “Why not?”

John E. Gustafson, MD
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I saw acres of tape drives, laser research, engineers
doing rock climbing in the cafeteria… I was hooked.

Dad is 98 now and
still winning at
contract bridge
(he’s a Grandmaster
twice over).

Grumpy Old Men…

So I went along. 



1970: For me, it all started with this question…
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What is
𝑖!
?

None of the math teachers in my high school could tell me.
Like, what is it as a numerical value??



Progress: I Discovered the Gamma Function

𝑧! = Γ 𝑧 + 1 . Aha!

Γ 𝑧 ≡ ∫!
" 𝑡#$%𝑒$&𝑑𝑡. But…

how do you evaluate that for 𝑖 + 1?

Γ !
" = −!

" ! = 𝜋. Really?? Wild.

More progress when I found this:

Γ 𝑧 =
1
𝑧
/
'(%

"
1

1 + #
'

1 +
1
𝑛

#

Looks calculable, except for that ∞ part… and convergence is slow.
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1972: Hewlett-Packard introduces the HP-35

8

• The first “electronic slide rule”

• US$395 (that’s US$2827 today)

• I wonder if it would allow 
calculation of 𝑖! using 

𝑧! ~ 2𝜋𝑧 #
)

#
.

• Other teenagers wanted their
own car. I wanted one of these.



Trimmed trees, hedges, weeded at $3/hour
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• 17-year-old me scrimps
and does odd jobs, and
finally gets one.

• Huge academic advantage

• Decimal floating-point…
and the function routines
had bugs. Like, exp(ln(2.02)) = 2.

• I learn to be very suspicious of floating-point calculations.



Early 1970s: HP forms a calculator division
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• HP hires a consultant, this guy:

• A Canadian mathematician named
William “Velvel” Kahan

• Already known for brilliant
numerical analysis papers

• Also known for his weaponized sense of humor

• His first designs are the HP-45, HP-67, and HP-97



Kahan’s HP-97 got me through Caltech
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• It was programmable.
A numeric PC.
With a printer!

• Other students used
the campus mainframe
for homework.

• High-quality 10-decimal floats, 10–99 to 1099

• My girlfriend resented the attention I gave it
instead of her.



1975: Trying to calculate 𝑖! leads me to
a math breakthrough
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• I discover a fast-convergence infinite product for the
Gamma function in my sophomore year.

• Caltech gives me the Eric Temple Bell Award for it.

• Applied mathematician John Todd shows me how to publish a math paper 
(my first).

• It allows me to calculate 𝑖! ≈ 0.498 − 0.155𝑖, after ten years wondering.



1977: Cray-1 had 64-bit floats, 16-bit exponent
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Cray-1 fails a × b = b × a, to save transistors.

To quiet complaints, Cray sorts
the inputs so a ≤ b. Problem “solved.”

The cheat



Also in 1977…
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DEC introduces the VAX-11/780.

The Apple II is introduced, at $666. No
floating-point.

TRS-80 personal computer comes out.
Floating-point built into ROM. Yes!

Once again, I had to have one.

Dog eating my last algorithm



1978: I discover a kindred spirit as a grad student
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At Caltech we find a common interest in
doing much better math on computers.

He says he’s building “SMP”, a
“Symbolic Manipulation Program.”

Years later, Steve Jobs will suggest that
Mathematica would be a cooler name for it. Wolfram agrees.

Stephen Wolfram



The origin of IEEE 754
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1977: Intel’s John Palmer is green-lighted to co-architect the i8087 
coprocessor with Bruce Ravenel. Kahan brought in as consultant.

1980: Intel announces the ambitious chip. $150. Its 
64-bit double used an 11-bit exponent. 50 kFLOPS.

Word of i8087 creates industry panic over Intel 
clout, and demand for an IEEE standards
committee to make playing field fair.

Oct 1979: Kahan, Palmer et al. announce a
proposed standard for floating-point.

John Palmer, 1946–2017



Why 11-bit or 16-bit exponent for 64-bit floats?
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Because exponent size is log2(precision) + constant?

Because studies were done that showed that this produced 
the dynamic range needed for scientific computing?

Because that size means all single-precision products a × b can 
be stored exactly in double-precision?

Because big significand multipliers were really hard to build 
but big exponent adders were cheap and easy?



Donald Knuth on Underflow to Zero
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The Art of Computer Programming: Seminumerical Algorithms,
Vol.2, First Edition, 1969

“It has unfortunately become customary in many 
instances to ignore exponent underflow and simply to set 
underflowed results to zero with no indication of error. 
This causes a serious loss of accuracy in most cases 
(indeed, it is the loss of all the significant digits), and the 
assumptions underlying floating point arithmetic have 
broken down…”



Internal IEEE 754 War over Gradual Underflow
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• Decision misstep: Choosing underflow to zero, not ±minReal.

• Result: X – Y can be zero when X ≠ Y. Major contradiction.

• David Goldberg introduced denormal floats as a band-aid. 
Kahan backed him. The heated arguments lasted six years. 

David Goldberg William Kahan



An i8087 Throwback Idea: A Separate “Sign Bit”

Negative integers were originally stored in
“sign-magnitude” form, imitating the way 
humans write + and – before digit strings.

BAD idea. Why? Well, 
here’s one reason:

IBM 701, 1953

+

0

5

101

–

1

5

101

+

0

0

000

–

1

0

000
Welcome to the joys of 
“negative zero.” 20



Remember adding signed numbers in school?

To add nonzero signed integers m and n:
Are they the same sign or different sign?

If they are the same sign, add their magnitudes.
Apply that sign to the resulting sum, DONE.

Else if they have different signs,
Find out which magnitude is bigger.
If m has bigger magnitude,

Subtract n’s magnitude from m’s magnitude.
Apply m’s sign to the result. DONE.

Else
Subtract m’s magnitude from n’s magnitude.
Apply n’s sign to the result. DONE.

21



Floating Point Systems
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1981: FPS introduces a 64-bit attached processor (11-bit exponent… 
hmm…) as the IEEE 754 debates rage.

1982: Post-PhD, I join Floating Point Systems. I learn about Kahan and 
meet him at conferences.

1984: I’m asked to lead a “skunk works” project to create a massively 
parallel hypercube supercomputer that will fill a building.

1986: IBM’s Alan Karp announces his defiant $100 bet that massive 
parallelism cannot get to 200× speedup; Digital’s Gordon Bell joins in 
offering $1000 Prize for best parallel speedup.



Ulrich Kulisch and Interval Arithmetic
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• FPS also introduced me to a 1981 book by Kulisch and Miranker 
proposing interval arithmetic to control rounding error.

• It involves doing exact dot products and bounding the calculations. 
FPS built hardware for this as an R&D project.

• Parallel processing gives different answers unless you use exact dot 
products to restore the associative property, (a + b) + c = a + (b + c).

• Epiphany. Finally, a way to end rounding error!

• Hmm… what’s the catch?



Kulisch battles to get the EDP into IEEE 754

24

• The “exact register” for doubles is, like, 4,664 
bits wide! (Because of oversized exponents)

• How does it handle exceptions like NaN and ∞? 
Answer: It doesn’t.

• Kahan frequently flips between “Everything 
must be perfect” to “Perfection is impractical.” 
(With scathing humor for each.) He refused to 
believe the exact approach was actually faster.

Kahan rejected it from IEEE 754, saying extended double suffices.

Prof. Ulrich Kulisch
Karlsruhe Institute of Technology



Here’s the magic that IEEE 754 threw away
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Any expression using + – × / can be written as Lx = b where L is lower 
triangular and the last xn is the desired calculation. Example:

f = (a + b) × c – d / e  

x1
x2
x3
x4

e × x5
x6

= a
= x1 + b
= c × x2
= d
= x4
= x3 – x5

1
–1

0
0
0
0

a
b
0
d
0
0

x1
x2
x3
x4
x5
x6

0
1
c
0
0
0

0
0

–1
0
0

–1

0
0
0
1

–1
0

0
0
0
0
e
1

0
0
0
0
0
1

=

Exact dot products allow you to find f to within 0.5 ULP!



Another i8087 decision that got into IEEE 754:
“Floats overflow to ±∞.” Why that’s a bad idea:
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Exact answer to three decimals: 6.47⋯
Answer using 16-bit IEEE 754 Standard floats: 

0.00 FAIL
By the way: answer using 16-bit posits: 6.48⋯

𝑛!

𝑛" + 1
𝑛 = 42.Calculate for

26



Folly: Use processor flags to indicate a problem

Set x = 2.6469783×10–23 (as a 32-bit float, should be 0x1A000001).
Compute y = sqrt(x2). Should get something close to x, right?
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An IEEE 754 compliant system will give you 3.7433921×10–23, a 
relative error of 41% with not even a single correct digit.
A typical GPU will return 0.

In 38 years, not one language has provided support for 
viewing the IEEE 754 processor flags. Programmers only 

see underflow when the result is 0 and shouldn’t be.



Folly: The 9 Quadrillion Names for NaN

IEEE 754 doubles allow 9,007,199,254,740,990 bit patterns that 
indicate an answer is indeterminate, or Not-a-Number (NaN).
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Is NaN = NaN? The Committee flunked Aristotelian Logic 101 and 
decided, no. A thing is not always equal to itself! 
Kahan hoped vendors would encode the program address where 
the error happened. Only HP tried doing that, and only once.

Nothing ruins a number system more than having 
redundant ways to represent the same thing.



The IEEE 754 battle rages for six years
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1979: Kahan immediately loses three “must have” demands:
• Decimal, not binary
• Perfect reproducibility across systems
• 128-bit “extended double” precision

Intel (Palmer) insists the i8087 will define IEEE 754.

1982: IBM PC introduced, creates $2B market overnight, including 
demand for better floating-point performance. At least kiloflops.

1985: IEEE Std 754™ ratified, with grumbling about denormals.



Principles for Computer Arithmetic Design
• No covert use of extra precision. Ever.
• No redundant bit patterns to mean the same value
• Math libraries get correctly-rounded answers for ALL inputs.
• Support for exact sums, exact dot products (associativity)
• No hidden “modes” or invisible  “processor flags”
• Map reals monotonically to signed integer format
• Stable when 0 bits appended, making precision change trivial
• Don’t underflow or overflow; saturate to ±minReal, ±maxReal.

30

IEEE 754 floats failed every single one of these principles.



nCUBE
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1986: Delays in the Inmos transputer trash my FPS hypercube project… 
but nCUBE has a full-custom system that works.

I join nCUBE, reporting to the CEO… John Palmer! Palmer
fills me in on all the gory details of how IEEE 754 came to be.

Sandia buys a full-size nCUBE with 1024 processors. I realize this is my 
chance to prove that Amdahl was wrong: parallelism works.

1987: To use the 1024-processor system, I need to become a customer. 
So I join Sandia and conspire to beat the Karp and Bell challenges.



1987–1989: Sandia National Labs
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• Speedup of 1020 from 1024 
processors, and a theoretical 
explanation of why Amdahl’s 
law didn’t stop us

• Parallelism changes rounding 
errors slightly…

• Disruption: Industry embraces 
parallel computing at last.

• At age 33, I find that a law has 
been named after me.

• Great! Now I can get funding to 
start my own lab!

Robert Benner, Gary Montry, and me after winning the first Gordon Bell 



1990 – 2000: The Scalable Computing Lab
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• DOE-funded lab within Ames Lab at Iowa State
• Quickly grew to ~20 people, won R&D 100 Awards
• Found a validated arithmetic approach for 

radiation transfer modeling (radiosity graphics)
• Found a validated arithmetic approach for 

Laplace’s Equation, which had defied interval 
methods

• “If I can find enough examples, I’m going to write a 
book on how to fix computer arithmetic.”



Two-Body Problem Forces Return to Industry
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1999: I marry Dr. Phyllis Crandall of DOE’s Los Alamos National Lab. I’m still at DOE’s 
Ames Lab. DOE has serious funding challenges and a hiring freeze.

2000: Sun Microsystems is hiring anyone who can fog up a mirror. Phyl and I join Sun 
and meet interval arithmetic fanatic Bill Walster, son of a tent revivalist minister.

2005: Sun drops hardware support for IEEE 754 exceptions; some customers howl.



2008: IBM Gets the Fused Multiply-Add into 754
• IBM already had put this into their processors.
• Sticking it into the IEEE 754 Standard (2008) would cleverly force all their 

competition to redesign their CPUs at great expense.
• Sun and Intel screamed “bloody murder!” but IBM eventually won.
• Should compilers fused multiply and add opportunistically and covertly?
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𝑥!– 𝑦!
If you do, and you evaluate 

when 𝑥 = 𝑦, half the time you
will get NaN, not zero! 



Intel’s view of IEEE 754 as of 2009
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2009: I join Intel, propose a Technical Strategic Long-Range Plan (TSLRP) to improve floats.

It gets approved. This is a Big Deal. I suggest fundamentally re-vamping IEEE 754. Intel’s 
CTO, Justin Rattner, says: I think, but do not say out loud:



Fix the IEEE 754 Standard?
Can we get help from “the father of IEEE 754,” Bill Kahan? Probably not.

“Linguistically legislated exact 
reproducibility is unenforceable.”

“Faster matrix multiplication is 
usually too valuable to forego for 
unneeded exact reproducibility.”*
from “How Java’s Floating-Point Hurts Everyone Everywhere”
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Plancks’ Principle
“A new scientific truth does 
not generally triumph by 
persuading its opponents 
and getting them to admit 
their errors, but rather by 
its opponents gradually 
dying out and giving way to 
a new generation that is 
raised on it.”

Max Planck (1858–1947)



Playbook for a successful technology disruption
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• Do NOT patent the idea. Open-source everything.

• Introduce it to small companies who have nothing to lose and 
everything to gain. (Big companies always resist change.)

• Amass a pile of real-world examples where the idea is a win.

• Also create a theory of why the idea works or is better.

• Sit back and enjoy the chaos. Change takes about ten years.



Open source everything? Check.
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2013–2015: I give myself a sabbatical to 
write a book, hence no corporate IP rights. In 
Mathematica. Email with Kahan goes dead.
Kahan reportedly goes ballistic at the title of 
the book. (That was intentional.)
That photo on the cover is a Hawaii volcano… 
boiling the ocean.
Feb 2015: End of Error: Unum Arithmetic hits 
#1 in its Amazon category.



The Singapore Connection
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Mar 2015: Singapore’s A*STAR thinks I’m onto 
something with unums.

A*STAR (Marek Michalewicz) invites me to come to 
A*STAR / NUS to advance unum research (and 
maybe make it hardware-friendly).

Free room and board, six-figure salary in a tropical 
paradise to do what I was doing anyway…

Hmm… tough decision. (not)



2016: The Great Debate: The Wrath of Kahan
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June 2016: Furious at the success of The End of Error: Unum Computing, Kahan (age 83) 
challenges me to a public debate at the ARITH conference. I accept.
This is the man who, indirectly, taught me numerical analysis. My hero and my friend. I 
keep trying to stand on his shoulders to see farther, and he keeps trying to flick me off!
I pointed out that weaponized humor may work for Donald Trump, but has no place in a 
mathematical debate. The debate did not go well for him. 

The full 
transcript is 
on the web.



Epiphany: Hardware-Friendly Unums
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November 2016: RISC-V asks for a hardware-friendly version of unum arithmetic.

December 3, 2016: Got it! Yonemoto figures out how to do the decoding.

Feb 3, 2017: Presented at Stanford as part of EE380 Colloquium Seminar series.

26,000+ views. 
Now sit back and 
enjoy the chaos!



In Summary
• IEEE 754 had a good run, but technology changes are inexorable.
• IEEE 754 floats (of any precision) are now obsolete; vendors are 

disingenuous about noncompliance.
• I’ve had a front-row seat at this skirmish for a very long time.
• This is an opportunity for a clean-slate design (like posits).
• Oh… and I don’t have to puzzle over 𝑖! any more:
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Farewell to floats. 
Hello, CoNGA!
THANK YOU.


