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• Reducing precision/optimizations in 
inference has received a lot of attention

• Training complex networks with large 
datasets can take time

• Bandwidth and Memory limitations

• Reduced precision

• Requires representations to efficiently 

reduce numerical error

Training Neural Networks

Image Source: https://www.topbots.com/a-brief-history-of-

neural-network-architectures/ 
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• 16-bit floating-point formats cannot work on their own 

• Unlike inference, training has higher dynamic range and precision requirements 

• Additional techniques

• Scaling, master copy of weights, fused operations, maintaining some computations at IEEE32

• FP8 training – complex scaling

• With each format using different techniques, how do they compare against each other 
under identical conditions?

• IEEE16 (half-precision), bfloat16, DLfloat, Posit

Mixed-precision training



FP16
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• Developed by Google

• Follows IEEE 754 rules, w – 8 bits, t – 7 bits, emax – 127, bias - 127

bfloat16
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• Developed by IBM

• 6-bit exponent field 

• No sub-normal values, one representation for NaN and infinity

DLFloat
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• IEEE 754 compliant 16-bit floating-point representations with 6 and 7 bits of exponent

IEEE16_6 and IEEE16_7
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• Posits

• nbits (16) and es set the environment
(standard defines es = 2)

• Sign 𝑆, regime 𝑅, exponent 𝐸, fraction 𝐹

• maxpos - largest real value expressible as a posit,minpos - smallest nonzero value 
expressible as a posit

Posits

NaR

3.55393 × 10−6
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• Relative Decimal Accuracy (RDA) between an exact value x and its approximated value 
%𝑥,

𝑅𝐷𝐴 𝑥, %𝑥 = 𝑙𝑜𝑔10 ( 𝑥 /|𝑥 − %𝑥|)

Relative Decimal Accuracy
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Relative Decimal Accuracy
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Optimal Format?

Format Min.

Exponent

Max. 

Exponent

Precisi

on

Min. Value Max. 

Value

IEEE32 -149 (-

126)

127 23 bits 1.47e-45 

(1.75e-38)

3.48e+38

bfloat16 -133 (-

126)

127 7 bits 9.18e-41 

(1.75e-38)

3.38e+38

DLFloat -31 32 9 bits 2.33e-10 8.58e+9

IEEE16 -24 (-14) 15 10 bits 5.96e-8 (6.10e-

5)

6.55e+4

IEEE16_6 -39 (30) 31 9 bits 1.82e-12 

(9.32e-10)

4.29e+10

IEEE16_7 -70 (-62) 63 8 bits 8.47e-22 

(2.17e-19)

1.84e19

posit16 -28 28 0-12 

bits

3.73e-9 2.68e+8

posit16_2 -56 56 0-11 

bits

1.38e-17 7.20e+16

posit16_3 -112 112 0-10 

bits

1.93e-34 5.19e+33



Comparison Results
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Evaluation

• Using Caffe and Pytorch
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Model LeNet LeNet convnet NIN Squeeze

-Net

AlexNet ResNet

18

Trans. 

Base.

Trans. 

Base.

Dataset MNIST FMNIST CIFAR10 CIFAR10 ImageNet ImageNet ImageNet 30K IWSLT14

IEEE32 98.70% 89.10% 78.70% 56.06% 56.40% 57.04% 67.88% 35.42 23.54

bfloat16 98.24% 89.08% 76.02% 0.96% 0.32% 52.40% 61.88% 35.18 21.68

DLfloat 98.66% 89.38% 77.96% 45.48% 54.24% 46.56% 69.12% 35.49 9.43

IEEE16 98.70% 89.22% 73.02% NaN 0.00% 53.08% NaN 0 Error

IEEE16_6 98.72% 89.60% 78.56% 46.28% 54.72% 46.84% 68.00% 35.59 12.6

IEEE16_7 98.46% 89.54% 78.74% NaN 0.24% 9.96% 67.52% 35.16 9.46

posit16_1 98.72% 89.38% 9.76% 54.92% 50.80% 50.68% 0.00% 34.31 9.45

posit16_2 98.78% 89.36% 77.74% 53.92% 56.80% 53.60% 67.64% 35.18 24.97

posit16_3 98.66% 89.30% 79.72% 53.74% 56.48% 53.16% 67.60% 35.06 24.32

Comparison Results
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• posit16_1’s dynamic range is smaller than all the other formats except for IEEE16

• Formats with greater dynamic range such as bfloat16 do not perform as well

• IEEE16 shows better performance than other float types in the case of 
AlexNet/Imagenet

Observations
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Performance on Hardware

• Xilinx U250 Alveo Data Center Accelerator Card with synthesis done in Vivado 2018.2

• Conversion to and from IEEE32 for FP16

• Measure LUT, LUT memory, Registers, Depth
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Performance on Hardware contd.

FP16 Conversion Depth LUT LUTMem Registers

bfloat16
F 1 0 0 0

B 1 3 0 0

DLFloat
F 2 27 0 18

B 3 63 0 43

IEEE16
F 18 223 1 469

B 12 325 0 278

IEEE16_6
F 18 217 1 462

B 12 331 0 277

IEEE16_7
F 18 216 1 457

B 12 341 0 278

posit16_1
F 3 115 0 84

B 5 703 0 318

posit16_2
F 3 112 0 83

B 5 723 0 316

posit16_3
F 3 118 0 84

B 5 596 0 314

*F – IEEE32 to FP16

B – FP16 to IEEE32



Accuracy Analysis
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• Understand and explain the behavior of number representations in training

• NIN/CIFAR100

• 120K iterations

• posit16_1 vs IEEE16_6

Analyzing Accuracy Behavior

Model NIN

Dataset CIFAR100

IEEE32 56.06%

DLFloat 45.48%

IEEE16_6 46.28%

posit16_1 54.92%
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Accuracy differences between posit16_1 and IEEE16_6

RDA w.r.t IEEE32 of IEEE16_6 vs posit16_1
Distribution of Infinitely Accurate Numbers of IEEE16_6 

vs posit16_1
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• Begin at one end of the network

Loss behavior

NIN/CIFAR100 Training Loss
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• End of training

Loss behavior contd.

Accuracy of Loss Layer Activations Accuracy of Loss Layer Gradients
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• Weight layer before loss

Effect on Weights

Accuracy of Weights
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• Accuracy of learned weights has a significant 
impact on the training process

• Higher posit accuracy for weights transcends 
to other values such as gradients

• The weight values for which posits achieve 
superior accuracy is larger in magnitude

• Range of the weight values stabilizes early in 
the training

• This results in improved overall training 
accuracy for posits

• Larger weight values which also occur more 
frequently inside the optimal accuracy range of 
posits, contributes to posits’ superior accuracy 
result of this benchmark.

Posit Accuracy in Training
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• The unique accuracy 
distribution of posits allow us 
to customize the accuracy for 
a distribution without
requiring more bits

• Shift to achieve scaling factor 
a power of 2

• Achieve IEEE32 performance

Shifting the Accuracy Peak



Discussion and Conclusion 
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• Traditional FP16 formats studied so far for CNN training all have uniform accuracy 
distributions and differ mostly in their bit configuration

• The IEEE 754 standard 16-bit format is inferior for out-of-the-box training of neural 
networks compared to the other float types

• Non-uniform accuracy formats such as posits provide broader versatility for neural 
network training

• Analyzing the dynamic range and precision as they relate to the distribution of the 
weights is a useful indicator for selecting the FP16 format to use

• Shifting the accuracy peak of posits leads to better training results

Discussion and Conclusion
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