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Thesis

Fast Fourier Transforms (FFTs) for signal and image processing
have format needs similar to those for Machine Learning… tent-
shaped distribution bounded above but not below.

16-bit IEEE floats are too lossy to use for FFTs, so 32-bit is used.

16-bit posits are sufficiently accurate that FFTs followed by 
inverse FFTs can return the original signal without loss. 

FFTs with SoftPosit and SoftFloat allow a fair comparison of the 
speed of posits with the speed of floats of the same precision.
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Typical Discrete Fourier Transform (DFT) Definition
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It looks like 𝑂 𝑁! work, but Gauss found a shortcut, the “Fast Fourier Transform.”
Rediscovered by Bell Labs researchers Cooley and Tukey in the early 1960s.



FFTs are the “Achilles Heel” of HPC

• Memory wall: 𝑂 𝑁 log𝑁
operations, but 𝑂 𝑁!/#

data motion

• TOP500 supercomputers 
are typically thousands of 
times slower at FFTs than 
at LINPACK.

• Solution: more info per bit 
in the data format!
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The kernel FFT operation is a “butterfly.”
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• ”Twiddle factors” 𝑒±"#$%&/( = cos "#&
( + 𝑖 sin("#&( ) are often written as 𝑤 for short.

• A radix 2 FFT butterfly takes four multiplies, six add/subtracts in general.
• The radix 4 FFT butterfly is more complicated but uses 10% fewer operations.



Are Lossless FFTs possible with 16-bit formats?

12-bit A-to-D
Convertor (ADC) Input

Bitwise Identical
Output Data?

Forward
FFT

Inverse
FFT

Round to
12 bits

Convert to
16 bits

• We will show that 16-bit IEEE floats cannot do this.
• An “idealized” 16-bit float cannot, either. More on this later.
• Since the 1970s, image and signal processing have had to 

use 32-bit floats to prevent severe accuracy loss.
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What values actually occur in a signal FFT?

A skewed tent-shaped distribution, provably bounded on the right.
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Idealized 16-bit floats do not fit FFT distribution.
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“Idealized” means
• only one NaN value

• only one zero
• largest and smallest 

exponent cases are 
treated as normal

We tried them all, and 
they are all very lossy.

Significant Digits

Dynamic Range

eS=2 13-bit fraction, ~4.2 decimals

¼ 4

eS=5 10-bit fraction, ~3.3 decimals

10510-5

eS=7 8-bit fraction,
~2.7 decimals

101910-19



New Approach Using 16-Bit Posits

12-bit A-to-D
Convertor Input

Bitwise Identical
Output Data?

Forward
FFT

Inverse
FFT

Round to
12 bits

Convert to
16 bits

• Tested 𝑁 = 1024 and 4096 points
• Decimation-in-Time (slightly more accurate)
• Radix 4 (five or six “butterfly” passes)
• Value magnitudes cannot exceed 𝑁 = 32 or 64.
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Remember the posit “sweet spot”
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With eS = 1, 16-bit posits have accuracy ≥ 16-bit IEEE 
floats for magnitudes 2–6 to 26 (1/64 to 64).



Trick #1: Symmetric DFT stays in posit “sweet spot”
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If inputs are in −1, 1 , outputs are in − 𝑁, 𝑁 .



Trick #2: Use radix 4, normalize on each pass.
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This keeps accuracy in the “sweet spot” and normalizes by ⁄1 𝑁.
Division by 2 is zero cost if you apply it in the “twiddle factor” table.

÷2 ÷2
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One of the 
passes involves 
no rounding 
from 
multiplication;
w is just −1.



Trick #3: Use the quire for the kernel operation
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Results of a 1024-point FFT accumulate only four rounding errors
from beginning to end of the five “butterfly” passes!

Operations grouped by overbar are exact dot products, then rounded once.



Round-trip Error Measured with RMS
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16-bit IEEE floats lose far too much information

Scatter plot of 
errors of real 
and imaginary 
data (2048 
points).

Losses force 
use of 32-bit
floats for 
signal 
processing. 

Round-Trip Error, 16-bit floats

12-bit result rounds incorrectly

12-bit result rounds incorrectly
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Round-Trip Errors After Rounding to ADC Accuracy
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For 12-bit ADC signals, 16-bit posits with eS = 1 are off by 1 Unit in Last Place 
(ULP) for 2.1% of the values, versus 66.7% for floats. But we can do even better.



Generalized Posits: New Parameters

•Move center of exponent 
range with eBias.

• Blunt the tapering by 
limiting the maximum 
regime to rS bits.

• Can allow different rS and 
eS values for left and right 
halves of the tent.
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Can dial from posits to floats!
• Adjust eS and rS in tandem to keep 

dynamic range similar.

• When rS becomes 2, you get idealized 
floats (green block).

• Ideal rS for a particular application is 
often the original posit definition 
(magenta triangle), but not always.

• Asymmetric option useful when 
maximum |x| is known  but 
minimum |x| could be anything.

Log10(|x|)

Values
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Binade
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A Generalized 16-Bit Posit Matched to FFT Needs:
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Only 127 out of 65535 values (0.2%) are
unused (greater than 32) with this format.

Limit regime length to 14
Exponent size eS = 0
Bias exponent by 2–2



16-bit generalized posits can easily do a lossless FFT

Quire is only 
64-bit. Fast.

Signal noise 
reduced by
10 dB.

16 bits suffice.

Round-Trip Error, 16-bit floats

All values round correctly
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SoftPosit vs. SoftFloat speed for FFT data
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Corroborates Kulisch: Exact dot product is faster than a series of fused multiply-adds.

Measured on Intel® 
Xeon® CPU E5-2699 
v4; base frequency 2.2 
GHz, max Turbo 
frequency 3.6 GHz

OS is OpenSUSE 42.2 
(x_86_64)

Compiled with Gnu 
gcc 4.8.5, -O2, 
architecture ”core-
avx2”



16-bit posits vs 32-bit floats is a clear win

• With 32-bit floats, 1024-point FFT might not fit in cache

• Speed increases by >2× (half the data motion)

• Cache effects (especially for 2D and 3D FFTs)

• Quire is inherently faster than rounded float multiply-adds

• Power decreases by >2× (data motion dominates the power cost)

• Energy cost (power × time) therefore decreases by >4×.

• Aside: since Finite Impulse Response (FIR) filtering also can use quire, 
the same advantage for posits applies.
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Summary
• 16-bit posits suffice for signal processing FFTs.

• They can replace 32-bit floats now in use.

• Workload is very similar to Machine Learning.

• More than 2× power savings, 4× energy savings

• Tweaking 16-bit standard posits can yield 
lossless FFTs for 12-bit A-to-D convertors.

• The key tricks are to use radix 4, normalize by ½ 
on each pass, and use the quire.

• Benefits radio astronomy, MRI scans, X-ray 
crystallography, 5G networking, etc.
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