2023 Conference on Next Generation Arithmetic (CoNGA)

PLAUs: Posit Logarithmic Approximate Units to implement low-cost operations with real numbers

<u>Raul Murillo</u>, David Mallasén, Alberto A. Del Barrio and Guillermo Botella

Complutense University of Madrid, Spain

El Fondo Social Europeo invierte en tu futuro

UNIÓN EUROPEA Fondos Estructurales Invertimos en su futuro UNIÓN EUROPEA Fondo Social Europeo

Outline

Background

- Posit Logarithmic Approximate Units (PLAUs)
- Implementation analysis
- Applications
- Conclusions

Background

Scientific applications compute real numbers $(\log_2(x), \frac{1}{3})$ How to represent real numbers in computers?

- Floating-point (IEEE 754[™])
 - Used in most modern computers

1 bit	<i>n</i> bits	<i>m</i> bits
Sign	Exponent	Fraction

Emerging alternatives: bfloat16, TensorFloat, posits...

Posit[™] Arithmetic

- 1 bit New variable-length sign field: *Regime*
- Trade-off accuracy – dynamic range
- Only two special cases Zero and $\pm \infty$ (NaR)
- Single rounding mode
- Easy comparison

m bits

Fraction

Accuracy bits

k+1 bits

2 bits

Posit[™] Arithmetic

- New variable-length sign field: Regime
- Trade-off accuracy – dynamic range
- Only two special cases Zero and $\pm \infty$ (NaR)
- Single rounding mode
- Easy comparison

Accuracy bits

Posit[™] Arithmetic

- New variable-length Sign Regime Exponent Fraction
 Fraction
- Trade-off accuracy – dynamic range
- Only two special cases Zero and $\pm \infty$ (NaR)
- Single rounding mode
- Easy comparison

Accuracy bits

Drawbacks?

Not implemented in computers

High Area/Latency overhead

Float

1 bit	n bits	<i>m</i> bits
Sign	Exponent	Fraction

Posit

1 bit	k+1 bi	ts	2 bits		<i>m</i> bits		
Sign	Regim	e Ex	ponent		Fraction		
1 bit		<i>k</i> +1 b	its		2 bits	<i>m</i> bits	
Sign		Regin	ne		Exponent	Fraction	
1 bit	k+1 bits	2 bits			<i>m</i> bits		_
Sign	Regime	Exponent		Fraction			-
1022001	Constant and the second second	Contraction of the					

Outline

- Background
- Posit Logarithmic Approximate Units (PLAUs)
- Implementation analysis
- Applications
- Conclusions

Posit Logarithmic Approximate Units (PLAUs)

Use logarithm properties

 $\log_b(xy) = \log_b(x) + \log_b(y)$

$$\log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$\log_b(\sqrt[y]{x}) = rac{\log_b(x)}{y}$$

and approximation

$$\log(1+x)pprox x$$
 , for small x

[1] John N. Mitchell, "Computer multiplication and division using binary logarithms." *IRE Transactions on Electronic Computers* 4 (1962): 512-517.

[2] Raul Murillo, et al. "PLAM: A posit logarithm-approximate multiplier." *IEEE Transactions on Emerging Topics in Computing* 10.4 (2021): 2079-2085.

Posit Logarithmic Approximation

Standard Posit value:

$$X = (-1)^s \times 2^{4r} \times 2^e \times (1+f)$$

$$\log_2 X = 4 \times r + e + \log_2(1+f)$$
$$\approx 4 \times r + e + f$$

 $f\in [0,1)$

PLAUs – Multiplication

k = 4 reg + exp

$$P_{exact} = (-1)^{s_A + s_B} \times 2^{k_A + k_B} \times (1 + f_A) \times (1 + f_B)$$

$$\begin{bmatrix} \log_2 X = \ \approx 4 \times r + e + f \end{bmatrix} \begin{bmatrix} \log_b(xy) = \log_b(x) + \log_b(y) \\ \log_b(xy) = \log_b(x) + \log_b(y) \end{bmatrix}$$
$$P_{approx} = \begin{cases} (-1)^{s_A + s_B} \times 2^{k_A + k_B} \times (1 + f_A + f_B) & \text{if } f_A + f_B < 1, \\ (-1)^{s_A + s_B} \times 2^{k_A + k_B + 1} \times (f_A + f_B) & \text{if } f_A + f_B \ge 1. \end{cases}$$

PLAUs – Division

$$k = 4 reg + exp$$

$$Q_{exact} = (-1)^{s_A - s_B} \times 2^{k_A - k_B} \times (1 + f_A)/(1 + f_B)$$

$$\log_2 X = \approx 4 \times r + e + f \qquad \log_b(\frac{x}{y}) = \log_b(x) - \log_b(y)$$

$$p_{approx} = \begin{cases} (-1)^{s_A - s_B} \times 2^{k_A - k_B} \times (1 + f_A - f_B) & \text{if } f_A - f_B \ge 0, \\ (-1)^{s_A - s_B} \times 2^{k_A - k_B - 1} \times (2 + f_A - f_B) & \text{if } f_A - f_B < 0. \end{cases}$$

PLAUs – Square Root

k = 4 reg + exp

$$R_{exact} = \sqrt{2^k \times (1+f)} = 2^{k/2} \times \sqrt{1+f}$$

$$\log_2 X = \approx 4 \times r + e + f \qquad \qquad \log_b(\sqrt[y]{x}) = \frac{\log_b(x)}{y}$$

$$R_{approx} = 2^{k/2} \times (1 + f/2)$$

Error for PLAUs

Error for PLAUs (II)

Outline

- Background
- Posit Logarithmic Approximate Units (PLAUs)

Implementation analysis

- Applications
- Conclusions

Efficient HW Implementation for PLAUs

Efficient HW Implementation for PLAUs (II)

$$R_{approx} = 2^{k/2} \times (1 + f/2)$$

- Right shift
- Need to keep MSB
- Keep LSB for rounding

ASIC Synthesis – Multiplier

- +70% area savings
- 75% 80% less energy
- Up to 1150MHz

Exact Multiplier from:

[3] Raul Murillo, et al. "Comparing different decodings for posit arithmetic." *CoNGA 2022*.

CoNGA'23, Singapore, March 1-2, 2023

ASIC Synthesis – Divider

Synopsys DC 45-nm TSMC

- 81% 89% area savings
- 89% 91% power savings
- 99% 96% less energy
- Up to 1150MHz

ASIC Synthesis – Square Root

Synopsys DC 45-nm TSMC

- Area reduction by 82% – 91%
- ADP and energy savings of ~98% - 94%
- Up to 1150MHz

Outline

- Background
- Posit Logarithmic Approximate Units (PLAUs)
- Implementation analysis
- Applications
- Conclusions

Applications – Computer Vision

Blur filter (div)

Exact

Approximate

PSNR: 27.6019 SSIM: 0.98217

PSNR: 29.0023 SSIM: 0.98281

PSNR: 28.2892 SSIM: 0.98318

PSNR: 28.7468 SSIM: 0.97396

Applications – Computer Vision

Sobel filter for edge detection (mul, div, sqrt)

Exact

Approximate

PSNR: 51.0439 PSNR: 44.5427 PSNR: 45.6212 SSIM: 0.99909 SSIM: 0.99629 SSIM: 0.99629

PSNR: 38.2694 SSIM: 0.99503

Applications – Machine Learning

K-Nearest Neighbors (mul, sqrt)

Dataset	Instances	Attributes	Classes	K	Exact	Approx.
Iris	150	3	3	5	95.55%	95.55%
Wine	178	13	3	7	67.92%	67.92%
Glass	214	9	7	5	59.38%	59.38%
Breast Cancer	569	30	2	13	94.74%	94.74%

Outline

- Background
- Posit Logarithmic Approximate Units (PLAUs)
- Implementation analysis
- Applications
- Conclusions

Conclusions

- Posit arithmetic is raising interest for its properties...
- But still has a high implementation cost
- Posit Logarithmic Approximate Units (PLAUs)
 - Multiplication, division, and sqrt
 - Much faster circuits
 - Outstanding savings in area, power and energy
 - Relative error of -11.11%, 12.5% and 6.06%, respectively
 - Useful in error-tolerant applications (CV, ML, ...)

2023 Conference on Next Generation Arithmetic (CoNGA)

Thank you!

PLAUs: Posit Logarithmic Approximate Units to implement low-cost operations with real numbers

Raul Murillo - ramuri01@ucm.es

David Mallasén, Alberto A. Del Barrio and Guillermo Botella

https://github.com/ RaulMurillo/CoNGA 23

Complutense University of Madrid, Spain

UNIÓN EUROPEA Fondos Estructurales Invertimos en su futuro UNION EUROPEA

El Fondo Social Europeo invierte en tu futuro

Backup slides

Example Posit16

$$p = ((1-3s)+f) imes 2^{(1-2s) imes (4r+e+s)}, \quad r = egin{cases} -k & ext{if } R_0 = 0 \ k-1 & ext{if } R_0 = 1 \end{cases}$$

$$p = ((1 - 3 \cdot 1) + rac{150}{2^8}) imes 2^{(1 - 2 \cdot 1) imes (4 \cdot 3 + 2 + 1)}, \quad r = 4 - 1 = 3$$

p = -0.000043154

Relative Error

$$E_{mul} = \begin{cases} \frac{1+f_A+f_B}{(1+f_A)(1+f_B)} - 1 & \text{if } f_A + f_B < 1, \\ \frac{2(f_A+f_B)}{(1+f_A)(1+f_B)} - 1 & \text{if } f_A + f_B \ge 1. \end{cases}$$
$$E_{div} = \begin{cases} \frac{(1+f_A-f_B)(1+f_B)}{(1+f_A)} - 1 & \text{if } f_A - f_B \ge 0, \\ \frac{(2+f_A-f_B)(1+f_B)}{2(1+f_A)} - 1 & \text{if } f_A - f_B < 0. \end{cases}$$
$$E_{sqrt} = \frac{1+f/2}{\sqrt{1+f}} - 1.$$

Fig. 5: Comparison of division implementations for Posit(32, 2).

Design.

- fixed

- ADDEDA

Design

- Esitt

MR Aves

Mill Paver

A07

P

BOS Energy

- Acpres

Comparison of Posit Unit and FPU

FPGA synthesis targeting Genesys II (Vivado 2020.2) [4]

Arithmetic unit (LUT, FF)	Posit(32,2)	+Single IEEE 754	+Double IEEE 754
PAU Area	(11879, 2985)	(11796, 2979)	(11810, 2979)
FPU Area	_	(3726, 1008)	(6352, 1905)
Total Area	(44693, 23636)	(50318, 25727)	(55900, 27652)

[4] D. Mallasén, R. Murillo, et al. "PERCIVAL: Open-Source Posit RISC-V Core with Quire Capability." arXiv preprint arXiv:2111.15286 (2021). Source code available at <u>github.com/artecs-group/PERCIVAL</u>