
BoF: Improving Numerical Computation with
Practical Tools and Novel Computer Arithmetic

Dr. John L. Gustafson	
National University of Singapore and A*STAR Computational Resource Center	

	
Dr. Michael O. Lam	

James Madison University and Lawrence Livermore National Laboratory	

Live Q&A: tinyurl.com/sc17qna

Floating-Point Analysis Tools
Session leader: Dr. Michael O. Lam, James Madison University	

tinyurl.com/fpanalysis	
fpbench.org/community.html	

FLUCTUAT

•  Abstract interpretation for C and Ada programs
•  Interval arithmetic for guaranteed error bounds
•  In development since 2001
•  Targets safety-focused industrial applications
•  Not open-source, but free for educational use

CRAFT and Precimonious

•  Early precision auto-tuning projects
– Both recently extended using shadow analysis

•  CRAFT [ICS’13]
– Mike Lam, JMU (prev. UMD)
–  Instruction-centric via binary analysis

•  Precimonious [SC’13]
– Cindy Rubio-Gonzáles, UC Davis (prev.

UWisc-Madison and UC Berkeley)
– Variable-centric using LLVM

CRAFT [ICS’13]

l  Configurable Runtime Analysis for Floating-Point Tuning

l  Framework for x64 floating-point binary analysis tools

-  Cancellation detection

-  Dynamic range tracking

-  Mixed-precision auto-tuning

-  Reduced-precision analysis

-  Value histograms
l  (Andrew Shewmaker, previously LANL)

l  Source: github.com/crafthpc/craft

CRAFT [IJHPCA’16]

SHVAL [ESPT’16]

l  SHadow Value Analysis Library (github.com/lam2mo/shval)

l  Pintool for simulating alternative representations on compiled binaries

l  Native 32-bit IEEE float
l  Arbitrary precision (MPFR)
l  Unum 1.0 (library by G. Scott Lloyd, LLNL)
l  Posits (library by Isaac Yonemoto)

l  Extended by Ramy Medhat (University of Waterloo) to aggregate and track error
by instruction or memory location over time

-  Higher overhead, more information

l  Apriltags case study

-  1.7x speedup on average with only 4% error

-  40% energy savings in embedded experiments

SHVAL [EMSOFT’17]

Ganesh Gopalakrishnan
Zvonimir Rakamarić

and team
URL: soarlab.org

URL: www.cs.utah.edu/fv

UTAH FLOATING-POINT
TOOLSET

Video at tinyurl.com/SC17-FP-BoF-Utah-Youtube
Slide deck at tinyurl.com/SC17-FP-BoF-Utah-FP-Tools

UTAH FLOATING-POINT TOOLSET

1.  Verification of floating-point programs [SMACK]
2.  Error analysis

1.  Dynamic [S3FP]
}  Best effort
}  Produces lower bound (under-approximation)

2.  Static [FPTaylor]
}  Rigorous
}  Produces upper bound (over-approximation)

¨  Comes with rigorous global optimizer [Gelpia]
3.  Rigorous mixed-precision tuning [FPTuner]
4.  Compiler flag sensitivity [FLiT]

SMACK

}  Automatic software verifier based on LLVM
}  Extended with support for verification of

properties that require precise reasoning about
floating-points

}  Leverage floating-point decision procedures
implemented in Satisfiability Modulo Theories
(SMT) solvers
}  Z3 SMT solver for now

}  Part of official SMACK release
}  Enables verification of floating-point programs in C
}  Supports pointers, pointer arithmetic, dynamic

memory allocation, structs, function pointers…

S3FP
}  Finding program inputs that maximize floating-point

error (black box)

Inputs	

Floating-point Error	
Program	

S3FP
}  Guided fuzzing overcomes some drawbacks of

previous approaches
}  Improves scalability to real codes
}  Precisely handles diverse floating-point operations

and conditionals
}  Shown to be able to handle divergent conditionals

[LCPC 2015]

}  Guided fuzzing can detect (much) higher
floating-point errors than pure random testing

FPTaylor
}  Handles non-linear and transcendental functions
}  Tight error upper bounds
}  Rigorous

}  Over-approximation
}  Based on our own rigorous global optimizer
}  Emits a HOL-Lite proof certificate

}  Verification of the certificate guarantees estimate

}  Tool called FPTaylor publicly available

FPTuner

Optimization Problem	Gurobi	

Generic
Error
Model	

Efficiency
Model	

Gelpia	
Global

Optimizer	

Optimal Mixed-
precision	

Routine: Real-valued
Expression	

Error Threshold	

Operator Weights	

Extra Constraints	

User Specifications	

ENERGY CONSUMPTION BENEFITS FPTuner

21	

FLiT is a reproducibility test	
 framework in the PRUNERS	
 toolset (pruners.gihub.io).	

Hundreds of compilations
are compared against a
baseline compilation.	

FLiT

Improving Accuracy with Herbie

z = sqrt(x+1) - sqrt(x) z = 1/(sqrt(x+1) + sqrt(x))

Mechanisms	
 Random sampling	

 Arbitrary-precision math	

Algebraic rewrites	

 Simplification	

 Series expansion	

 Infer branches	

Evaluation	
Tried on 100s of exprs	

 Confirmed patches	

Multiple robust releases	

 Real-world users	

	

https://herbie.uwplse.org	

Finding Root Causes with Herbgrind

z = (x+1)-x
y = x +1	

z = y - x

z = 1

Three Main Systems:	
	

l  Real Number Shadowing	
	
	

l  Symbolic Expression
Inference	

	
	

l  Localization and Influence
Tracking	

l  Found bugs in SPEC2006 Benchmark (Calculix)	
l  Runs on complex numerical software	

�  Triangle	
�  Polybench	
�  GROMACS molecular dynamics simulation	

https://herbgrind.ucsd.edu	

FPBench: Community Standards for FP Tools

fpbench.org	

Compare FP tools: ~ 100 accuracy benchmarks	

Interop to compose tools : FPCore, FPImp (w/ C & Scala transl)	

Accurate baseline ℝ : SMT-based (titanic.uwplse.org)	

Growing community: Utah, JM, MPI, UW, etc.	

Floating-Point Tool Status
l  Rigorous analyses that do not (yet) work at scale

l  FLUCTUAT, FPTuner, Rosa, Daisy, etc.

l  Heuristic analyses that (partially) work at scale

l  CRAFT, Precimonious, Herbgrind, etc.

l  Growing, diverse community of tool developers and users

l  Numerical analysis and scientific computing

l  High-performance computing

l  Programming languages and compilers

l  Systems tools and software engineering

l  Correctness and ESPT workshops at SC’17

Join us!

Thank you!

For more information:	

tinyurl.com/fpanalysis	
fpbench.org/community.html	

Or contact me: lam2mo@jmu.edu

Next-Generation Arithmetic
Session leader: Dr. John L. Gustafson, National University of Singapore	

posithub.org	

Birds-of-a-Feather Session Part II:
The Need for New Arithmetic

•  Why now?
– The AI revolution is making everyone discover

that floats have better alternatives
– Reaching exascale requires overcoming power

and bandwidth limitations; floats are efficient at
neither

– Transistors are millions of times cheaper now
than when the IEEE 754 Standard was set

– A new format has been invented that uniformly
improves on the IEEE 754 Standard, so it’s no
longer a tradeoff argument.

Birds-of-a-Feather Session Part II:
The Need for New Arithmetic

•  A new standard lets us fix ossified
mistakes. IEEE 754 cannot evolve without
breaking.
– Gradual overflow: rejected
– Exact dot product: rejected
– Repeatable answer requirement: rejected
– Correctly rounded elementary functions:

rejected
– Hidden scratch work that makes some

answers inexplicably different: encouraged

Problems with Existing Arithmetic

•  No guarantee of repeatable or portable behavior
•  Insufficient 32-bit accuracy forces wasteful use of 64-bit data
•  Fails to obey laws of algebra (associative, distributive laws)
•  Fails to obey laws of logic (X = X, a = b means f(a) = f(b))
•  Poor handling of overflow, underflow, Not-a-Number results
•  Dynamic ranges are ill-suited to actual application needs
•  Rounding errors are invisible, hazardous, costly to debug
•  Computations change when parallelized

IEEE	Standard	Floats	
are	a	bandwidth-

inefficient,	1980s-era	
design.	

�����

0

�����

1 /64
�����

1 /16
�����

1 /8 �����

1 /4 �����
3 /8

�����
1 /2

�����3 /4

�����1

�����3 /2

�����
2

�����

3

�����

4

�����

8

�����

16

�����

64

�����

±∞

�����

-64
�����

-16
�����

-8�����

-4�����

-3
�����

-2
����� -3 /2

����� -1

����� -3 /4

�����
-1 /2

�����
-3 /8

�����

-1 /4

�����

-1 /8

�����

-1 /16

�����

-1 /64

•  Better accuracy with fewer bits
•  Absolute repeatability and

portability across systems
•  “Valids” allow automatic control

of rounding errors
•  Clean, mathematical design
•  32-bit can often replace 64-bit
•  Reduces energy, power,

bandwidth, storage, and
programming costs

•  Like parallel computing, the change
will be a lot of work, but worth it.

Posit arithmetic (invented Dec 2016)

High-performance error-free Linear Algebra!
!

Theodore Omtzigt, Cerlane Leong, Anantha Kinnal, !
Vijay Holimath, John Gustafson!

Posit Research

Problem!
Float addition and multiplication are not associative!

Non-reproducible results when going parallel!

Multi-thread, multi-core, many-core!

Dangerous for embedded intelligent systems!

Error analysis is very difficult!

Failure analysis is next to impossible!

!
Solution!

Posit Number System!

Tapered floating point format!

Use bits where you need them!

Quires and fused dot-products!

Error-free Linear Algebra!
Solve a system of equations Ax = b!

Gauss-Jordan yields a Reduced Row Echelon
Form!

With posits, the RREF can be the Identity Matrix!

Other matrix transformations work the same!

LU, LDMT, LDLT, QR, SVD, etc. !

Fused operators!
•  Depend on a super accumulator, called quire!

•  For cache-friendly block schedules!

•  Multiple quires need to be active!

•  Organize as a new register file and ISA src/tgt!

•  Increases context switch state significantly!

! Quires impose a significant impact on General
Purpose CPU uArchitecture!

HW Accelerators!
•  Organize computation around fused operator

pipelines!

•  Execution schedule takes quire into account!

•  Quire name space integrated into pipeline!

•  Context switch overhead is removed!

!
HW Accelerators can deliver error-free linear

algebra with more flexibility !

Posit Error-Free Tensor
Accelerator!

Shared memory!

CPU! Posit !
EF-TACC!

High Bandwidth !
local memory!

Local Memory Ctrl!

Fused Operator Ctrl!

Computational Kernel Ctrl!

Front-
End!

DMA!

2D Torus!

Posit SDK: ready to go!
Application!

(C/C++/Python)!

Error-Free Arithmetic Libraries!
(Linear Algebra, DSP, AI)!

PAL !
(Posit Arithmetic Library)!

HAL !
(Hardware Abstraction Library)!

Posit Hardware !
(Posit Arith Unit, Accelerators)!

General Purpose Hardware !
(x86, ARM, GPUs)!

Software emulation path! Hardware acceleration path!

LLNL-PRES-741490
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 17-SI-004

Universal Coding of the Reals:
Alternatives to IEEE Floating Point -
An Example Application

Jeff	Hi7nger,	Peter	Lindstrom,	and	Sco?	Lloyd	
Center	for	Applied	Scien8fic	Compu8ng	

Improving Numerical Computation with Practical Tools and Novel Computer Arithmetic
SC17 Birds of a Feather Flash Talk
14 November 2017

LLNL-PRES-741490
44	

§  Shock	wave	passing	through	ini8ally	quiescent	
L-shaped	chamber	

§  Ideal	gas	Euler	equa8ons	

§  Explicit	finite	volume	discre8za8on	

§  High-resolu8on	Godunov	solver	

We	consider	an	applicaDon	solving	the	
nonlinear	hyperbolic	Euler	equaDons	in	2D	

@tu+r · F (u) = 0

u =

0

@
⇢
⇢v
⇢E

1

A F (u) =

0

@
⇢v

⇢v ⌦ v + p
⇢vH

1

A

⇢H = ⇢E + p⇢E =
p

� � 1
+

1

2
|v|2

p0 = 1

⇢0 = 1
v0 = (0, 0)

Ms = 2.5

Uniform	grid:		
512x256	+	
256x768	cells	

u

n
i = u

n
i � �t

�x

2X

d=1

h
F

d
i+ 1

2e
d � F

d
i� 1

2e
d

i

uR
x

uL

t

LLNL-PRES-741490
45	

The	soluDon	generates	complicated	wave	
interacDons	

LLNL-PRES-741490
46	

It	is	useful	to	understand	the	soluDon	evoluDon	
in	order	to	understand	the	precision	results	

Shock	reflects	
off	of	far	wall	
Steps	48-89	

Second	
reflec8on	hits	

vortex	
Steps	121-135	

Shock	reflects	
off	of	near	wall	
Steps	103-120	

t	=	0.51	 t	=	0.95	 t	=	1.09	 t	=	1.28	

Reflected	
shock	hits	
vortex	

Steps	90-102	

Mul8ple	wave-
wave	and	

wave-vortex	
interac8ons	
Steps	136-189	

t	=	2.00	

LLNL-PRES-741490
47	

We	have	tested	numerous	types,	including	
posits,	using	the	Euler2D	code	

§  Features	in	the	results	correlate	to	features	in	the	solu8on	data	

§  The	general	trend	is	that	you	can	do	beXer	than	IEEE	float	at	32-bits	

§  It	appears	32-bit	posit,	es=1	performs	the	best	of	the	32-bit	types	tested	

LLNL-PRES-731413
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Universal	Representations	of	the	Reals:	
Alternatives	to	IEEE	Floating	Point	

Peter	Lindstrom	
Nov	10,	2017	

LLNL-PRES-731413

49	

§  Common	representation:	y	=	(-1)s	2e	φ(f)	
—  e	is	the	integer	exponent	
—  0	≤	f	<	1	is	the	fraction	
—  φ	:	[0,	1)	⟶	[1,	2)	is	a	monotonic	map	

§  IEEE	
—  Fixed-length	encoding	of	e	
—  Normalized	numbers:	φ(f)	=	1	+	f	
—  Subnormal	numbers:	φ(f)	=	0	+	f	

§  Posits	
—  Golomb-Rice	variable-length	encoding	of	e	
—  φ(f)	=	1	+	f	

We	are	developing	a	modular	framework	for	number	
representations	that	encompasses	IEEE,	posits,	and	others	

+1 0 10 0�11 10 0

0
000

0
±
1

1
000

0 1
10

+2

0 01 0

+ 1
2

�
2

1 01 0

�
1
2

1 1
1 0

+
3
2

0 10
1

0
11
1

+
4

0 01 1

+ 3
4

0
001

+
14

�
4

1
001

� 3
2

1 01 1

�3
4

1 10
1

�
1 4

1
11
1

LLNL-PRES-731413

50	

§  Other	exponent	encoding	schemes	
—  From	universal	integer	codes:	Elias	gamma,	delta,	omega,	…	

§  Other	fraction	maps	have	nice	properties	
—  Linear	reciprocal:	φ(f)	=	2	/	(2	–	f)	when	|y|	<	1	ensures	reciprocal	closure 		
—  Exponential:	2f	gives	smooth	mapping	on	entire	domain	
—  Rational:	Self-reciprocal,	cheaper	than	exponential	

§  Several	rounding,	under-	and	overflow	strategies	

§  Can	mix	and	match	via	modular	design	

We	are	developing	a	modular	framework	for	number	
representations	that	encompasses	IEEE,	posits,	and	others	

LLNL-PRES-731413

51	

Via	reciprocal	map,	decode	function	for	posits	(es	=	0)	is	C∞	
except	at	y	=	1,	where	it	is	C1	

0	

1	

2	

3	

4	

5	

6	

7	

8	

0	 0.125	 0.25	 0.375	 0.5	 0.625	 0.75	 0.875	 1	

re
al
	v
al
ue

	

normalized	binary	representation	

piecewise	linear	map	 reciprocal	map	

LLNL-PRES-731413

52	

Properties	of	16-bit	types	

type	name	 exponent	 fraction	
map	

dynamic	
range	(bits)	

additive	
closure	

additive	
error	

multiplic.	
closure	

multiplic.	
error	

IEEE	half	 5-bit	binary	 linear	 ~40	 8.79%	 1.08e-4	 0.37%	 3.16e-2	

binary	 5-bit	binary	 linear	 ~32	 8.74%	 1.84e-3	 0.34%	 3.89e-1	

exponential	 5-bit	binary	 exponential	 ~32	 0.01%	 1.80e-3	 46.24%	 3.88e-1	

Elias	omega2	 Elias	omega	 linear	 ~32	 40.35%	 1.60e-4	 0.23%	 1.27e-2	

Elias	omega3	 Elias	omega	 linear	 130,048	 47.30%	 ?	 1.02%	 ?	

Elias	delta	 Elias	gamma	 linear	 16,384	 41.88%	 ?	 0.24%	 ?	

posit0	(aka.	gamma)	 unary	 linear	 28	 46.88%	 9.36e-5	 0.16%	 7.05e-4	

posit1	 Rice	1	 linear	 56	 24.22%	 1.17e-4	 0.28%	 1.29e-3	

posit2	 Rice	2	 linear	 112	 12.31%	 1.30e-4	 0.48%	 2.31e-3	

posit3	 Rice	3	 linear	 224	 7.70%	 1.32e-4	 0.84%	 4.12e-3	

zfp	 block	float	 linear	 2,108	 N/A	(data	dependent)	

LLNL-PRES-731413

53	

Non-IEEE	types	exhibit	tapered	precision	

0	

4	

8	

12	

16	

20	

24	

28	

32	

-256	 -192	 -128	 -64	 0	 64	 128	 192	 256	

pr
ec

is
io
n	

	 	

exponent	

binary(8)	 gamma	 posit(1)	 posit(2)	 delta	 omega	

LLNL-PRES-731413

54	

Elias	delta	and	omega	are	asymptotically	optimal	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

0	 1	 2	 4	 8	 16	 32	 64	 128	 256	

re
la
tiv

e	
co

di
ng

	c
os

t	

lg(y)	

binary(8)	 gamma	 posit(1)	 posit(2)	 delta	 omega	

LLNL-PRES-731413

55	

Closure	for	16-bit	addition—representable	sums	

finite	inexact							 finite	exact							 infinite/NaN	

LLNL-PRES-731413

56	

Mean	relative	error	for	16-bit	addition	

negative	error no	error							 positive	error							 infinite/NaN	

LLNL-PRES-731413

57	

Closure	for	16-bit	multiplication—representable	products	

finite	inexact							 finite	exact							 infinite/NaN	

LLNL-PRES-731413

58	

Mean	relative	error	for	16-bit	multiplication	

negative	error no	error							 positive	error							 infinite/NaN	

Open Discussion

Live Q&A: tinyurl.com/sc17qna

Feedback survey: tinyurl.com/sc17bof

For more information:	

tinyurl.com/fpanalysis	
posithub.org	

Don't forget to fill out the conference survey as well:	
submissions.supercomputing.org/eval.html	

