
scale=1,angle=0,color=black,contents=

Posit Standard (2022)

1

Standard for Posit™ Arithmetic (2022)*

Posit Working Group

March 2, 2022

� � � � � � � � � � � � �

*The initial development of posit arithmetic was supported by Singapore’s Agency for Science, Technology and Research (A*STAR) and

by the USA’s DARPA TRADES Program, Contract #HR0011-17-9-0007.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

2

Standard for Posit™ Arithmetic

Sponsor

National Supercomputing Centre (NSCC) Singapore

Abstract

This standard specifies the storage format, operation behavior, and required mathematical functions for posit

arithmetic. It describes the binary storage used by the computer and the human-readable character input and

output for posit representation. A system that meets this standard is said to be posit compliant and will produce

results that are identical to those produced by any other posit compliant system. A posit compliant system may

be realized using software or hardware or any combination.

Key search phrases

posit arithmetic, reproducible computer arithmetic, efficient binary number format, Not a Real, “regime expo-

nent fraction”, binary rounding rules, quire arithmetic, fused expressions

Participants

The following people in the Posit Working Group contributed to the development of this standard:

John Gustafson, Chair

Gerd Bohlender

Shin Yee Chung

Vassil Dimitrov

Geoff Jones

Siew Hoon Leong (Cerlane)

Peter Lindstrom

Theodore Omtzigt

Hauke Rehr

Andrew Shewmaker

Isaac Yonemoto

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

3

Contents

1 Overview 4

1.1 Scope . 4

1.2 Purpose . 4

1.3 Inclusions and exclusions . 4

1.4 Requirements vs. recommendations, and posit-compliance . 4

2 Definitions, abbreviations, and acronyms 5

3 Posit and quire formats 6

3.1 Formats . 6

3.2 Represented data . 6

3.3 Posit format encoding . 6

3.4 Quire format encoding . 7

4 Rounding 8

4.1 Definition and method . 8

4.2 Fused expressions . 8

4.3 Program execution restrictions . 8

5 Functions 9

5.1 Guiding principles for the NaR exceptional value . 9

5.2 Basic functions of one posit value argument . 9

5.3 Comparison functions of two posit value arguments . 9

5.4 Arithmetic functions of two posit value arguments . 9

5.5 Elementary functions of one posit value argument . 10

5.6 Elementary functions of two posit value arguments . 10

5.7 Functions of three posit value arguments . 10

5.8 Functions of one posit value argument and one integer argument 11

5.9 Functions that do not round correctly for all arguments . 11

5.10 Functions not yet required for compliance . 11

5.11 Functions involving quire value arguments . 11

6 Conversion operations for posit format 12

6.1 Conversions between different precisions . 12

6.2 Conversions involving quire values . 12

6.3 Conversions between posit format and decimal character strings 12

6.4 Conversions between posit format and integer format . 12

6.5 Conversions between posit format and IEEE Std 754™ float format 12

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

4

1 Overview

1.1 Scope

This standard specifies the storage formats andmathematical behavior of posit™ numbers, including basic arith-

metic operations and the set of functions a posit systemmust support. It describes how results are to be rounded

to a real posit or determined to be a non-real exception.

1.2 Purpose

This standard provides a system for computations with real numbers represented in a computer using fixed-size

binary values. Deviations frommathematical behavior (including loss of accuracy) are kept to a minimumwhile

preserving the ability to represent a wide dynamic range. All features are accessible by programming languages;

the source program and input data suffice to specify the output exactly on any computer system.

1.3 Inclusions and exclusions

This standard specifies:

• Binary formats for posits, for computation and data interchange

• Addition, subtraction, multiplication, division, dot product, comparison, and other operations

• Fused expressions that are computed exactly, then rounded to posit format

• Mathematical elementary functions such as logarithm, exponential, and trigonometric functions

• Conversions of other number representations to and from posit formats

• Conversions between posit formats with different precisions

• Function behavior when an input or output value is not a real number (NaR)

Excluded from the standard are the specific names of the values and operations described here. The lower camel-

Case naming style is used here, but naming style is excluded from this standard. Implementationsmay use alter-

native names and symbols for values and operations that match the behavior described here.1

Also excluded are rules for how an implementation should handle and report errors. If a program attempts a

computation on posit values outside the domain that produces a real-valued output, or compares the NaR value

with a real number, behavior beyond the arithmetic result specified here (such as issuance of warnings) is up to

the implementation designers.

This is a numerical format standard, not a language standard. This standard enables a language to provide

deterministic rounding as a posit compliant mode.

1.4 Requirements vs. recommendations, and posit-compliance

All descriptions herein are requirements of system behavior, not recommendations. The decision of how to sat-

isfy the requirements and which precisions to support is up to the implementer of this standard, but all func-

tionality must be provided and behave as described for a system to be posit compliant. An implementation is

compliant with this standard if it supports full functionality of at least one precision. If the implementation sup-

ports more than one precision, then it must support conversions between them and every precision supported

must be posit compliant.

1For example, the arc hyperbolic cosine is here shown as arcCosH, but it may be called acosh in the math library for C so long as it

meets this standard’s requirement of correct rounding for all inputs. Similarly, a language may express a sum of two posits 𝑎 and 𝑏 as 𝑎 + 𝑏,
though that function is here called addition(𝑎, 𝑏). Rounding behavior must follow the rules in this document for any implementation to be

considered posit compliant.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

5

2 Definitions, abbreviations, and acronyms

bit field A contiguous set of bits in a format with a defined meaning. A bit field may extend beyond explicit bits

𝑏𝑛−1 ⋯ 𝑏0; bits beyond the format’s explicit bits are considered 0 bits.

exception A special case in the interpretation of representations in posit format: 0 or NaR.2

exponent The power-of-two scaling determined by the exponent bits, in the set {0, 1, 2, 3}.

exponent bits A two-bit unsigned integer bit field that determines the exponent.

format A set of bit fields and the definition of their meaning.

fraction The value represented by the fraction bits; 0 ≤ fraction < 1.

fraction bits The bit field following the exponent bits.

fused rounded only after an exact evaluation of an expression involving more than one operation.

implicit value A value added to the fraction based on the sign: −2 for negative posits, 1 for positive posits. Zero
and NaR do not have an implicit value.

LSB The least significant bit of a format or a bit field within a format.

maxPos The largest positive posit value. It is a function of 𝑛.

minPos The smallest positive posit value. It is a function of 𝑛.

MSB The most significant bit of a format or a bit field within a format.

NaR Not a real. Umbrella value for anything not mathematically definable as a unique real number.

n The number of bits in a posit format. It can be any integer greater than 1.

pIntMax The largest consecutive integer-valued posit value. It is a function of 𝑛.

posit value A real number representable using a posit format described in this standard, or NaR.

precision The total storage size for expressing any number format, in bits. For a posit, precision is 𝑛 bits.

quire value A real number representable using a quire format described in this standard, or NaR.

quire sum limit The minimum number of additions of posit values that can overflow the quire format.

regime The power-of-16 scaling determined by the regime bits. It is a signed integer.

regime bits A posit bit field following the MSB that uses a form of signed unary encoding (as opposed to posi-

tional notation) to represent the regime. There is always at least one regime bit 𝑅0. For 𝑛 > 2, there are
always at least two regime bits.

rounded Converted from a real number to a posit value, according to the rules of this standard.

sign The value 1 for positive numbers, −1 for negative numbers, and 0 for 0. The NaR value has no sign.

sign bit The MSB of a posit or quire format.

significand The implicit value plus the fraction; −2 ≤ significand < −1 for negative posit values, and
1 ≤ significand < 2 for positive posit values.

2Posit representation exceptions do not imply a need for status flags or heavyweight operating system or language runtime handling.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

6

3 Posit and quire formats

3.1 Formats

This section defines posit and quire formats and their representation as a finite set of real numbers or the excep-

tion value NaR. Formats are specified by their precision, 𝑛. There is a quire format of precision 16𝑛 that is used

to contain exact sums of products of posits of precision 𝑛. Dynamic range and accuracy are determined solely

by 𝑛. This standard describes example choices for 𝑛 like 8, 16, and 32. The posit format’s type label is “posit”

with the decimal string for 𝑛 appended. The corresponding quire format’s type label is “quire” with the decimal

string for 𝑛 appended, even though quire format has 16𝑛 bits.

3.2 Represented data

Aposit value is either the exception valueNaRor a real number𝑥 of the form𝐾×2𝑀, where𝐾 and𝑀 are integers

limited to a range symmetric about and including zero. The smallest positive posit value,minPos, is 2−4𝑛+8 and

the largest positive posit value,maxPos, is 1/minPos, or 24𝑛−8. Every posit value is an integer multiple ofminPos.

Every real number maps to a unique posit representation; there are no redundant representations. The posit

values are a superset of all integers 𝑖 in a range −pIntMax ≤ 𝑖 ≤ pIntMax. Outside that range, integers exist

that cannot be expressed as a posit value without rounding to a different integer; pIntMax is ⌈2⌊4(𝑛−3)/5⌋⌉.
A quire value is either NaR or an integer multiple of the square ofminPos, represented as a 2’s complement

binary number with 16𝑛 bits. Quire format can represent the exact dot product of two posit vectors having at

most 231 (approximately two billion) terms without the possibility of rounding or overflow.3

The properties of example and general posit format precisions are summarized in Table 1:

Property posit8 posit16 posit32 posit𝑛
fraction length 0 to 3 bits 0 to 11 bits 0 to 27 bits 0 tomax(0, 𝑛 − 5) bits
minPos 2−24 ≈ 6.0 × 10−8 2−56 ≈ 1.4 × 10−17 2−120 ≈ 7.5 × 10−37 2−4𝑛+8

maxPos 224 ≈ 1.7 × 107 256 ≈ 7.2 × 1016 2120 ≈ 1.3 × 1036 24𝑛−8

pIntMax 24 = 16 210 = 1024 223 = 8388608 ⌈2⌊4(𝑛−3)/5⌋⌉
quire format precision 128 bits 256 bits 512 bits 16𝑛 bits

quire sum limit 255 ≈ 3.6 × 1016 287 ≈ 1.5 × 1026 2151 ≈ 2.9 × 1045 223+4𝑛

Table 1: Properties of posit formats

3.3 Posit format encoding

Figure 1 defines the general format for posit encoding. The regime is a variable-length field. All of its bits but the

last are identical. The longer the regime, the more bits of fields to its right are not represented. These truncated

bits extending beyond the LSB are treated as 0 bits. Figure 2 shows how part of the exponent field and all of the

fraction field can be truncated. Figure 3 shows the extreme case where the regime extends to the LSB. The four

constituting bit fields in order of decreasing significant bits are:

1. Sign bit 𝑆. 𝑆 represents an integer 𝑠, its literal value, 0 or 1. The implicit value is (1 − 3𝑠).
2. Regime bit field 𝑅 consisting of 𝑘 bits identical to 𝑅0, terminated by 𝑅0 = 1 − 𝑅0 as shown in Figures 1

and 2, or just after the LSB as shown in Figure 3. 𝑅 represents 𝑟 = −𝑘 if 𝑅0 is 0, or 𝑟 = 𝑘 − 1 if 𝑅0 is 1.

3. The exponent bit field𝐸 has length 2 bits, but one or both bits may be beyond the LSB and thus have value

0. 𝐸 represents an integer 𝑒, its bits treated as a 2-bit unsigned integer. 0 ≤ 𝑒 ≤ 3.
4. The fraction bit field 𝐹 has length max(0, 𝑛 − 5) bits, but any number of those bits may be beyond the LSB

of the posit representation and thus are taken to be 0 bits. The number of explicit bits is 𝑚. 𝐹 represents

the fraction 𝑓, an 𝑚-bit unsigned integer divided by 2𝑚. 0 ≤ 𝑓 < 1.

3The product of two posit values in a format of precision 𝑛 is always exactly expressible in a posit format of precision 2𝑛, but the quire
format obviates such temporary doubling of precision when computing sums and differences of products. Sums of posit values using the

quire are guaranteed exact up to 223+4𝑛 terms, per the quire sum limit.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

7

𝑆 𝑅 𝑅0 𝐸 𝐹

1 bit MSB 𝑘 bits LSB

𝑅𝑘−1 … … 𝑅0

1 bit 2 bits

𝐸1 𝐸0

MSB 𝑚 bits LSB

𝐹𝑚−1 … … 𝐹0

Figure 1: General binary posit representation with all fields explicit

𝑆 𝑅 𝑅0 𝐸

1 bit MSB 𝑘 bits LSB

𝑅𝑘−1 … … 𝑅0

1 bit 1 bit

𝐸1

Figure 2: Example with all 𝐹 fraction bits and the 𝐸0 bit truncated

𝑆 𝑅

1 bit MSB 𝑘 bits LSB

𝑅𝑘−1 … … 𝑅0

Figure 3: Example with the 𝐹 fraction and 𝐸 exponent bit fields, and the regime termination bit 𝑅0 all truncated

The posit value 𝑝 is inferred from the bit fields 𝑆, 𝑅, 𝐸, and 𝐹 as follows:

1. Check if 𝑝 represents an exception: if all bits except 𝑆 are 0 bits (cf. figure 3),

• if 𝑆 = 0, then 𝑝 = 0.
• if 𝑆 = 1, then 𝑝 is NaR.

2. Otherwise, let 𝑓 ≔ 2−𝑚
𝑚−1
∑
ℓ=0

𝑓ℓ2ℓ ,

• if 𝑅0 = 0, then 𝑟 = −𝑘.
• if 𝑅0 = 1, then 𝑟 = 𝑘 − 1.

And 𝑝 = ((1 − 3𝑠) + 𝑓) × 2(1−2𝑠)×(4𝑟+𝑒+𝑠).

In Figure 3, if 𝑅0 is 1, then it representsmaxPos (𝑆 = 0) or −minPos (𝑆 = 1).

3.4 Quire format encoding

Quire format is a fixed-point 2’s complement format of precision 16𝑛, with fields as follows:

𝑆 (sign) 𝐶 (carry guard) 𝐼 (integal part) 𝐹 (fractional part)

1 bit MSB 31 bits LSB

𝐶30 … … 𝐶0

MSB 8𝑛 − 16 bits LSB

𝐼8𝑛−17 … … 𝐼0

MSB 8𝑛 − 16 bits LSB

𝐹8𝑛−17 … … 𝐹0

Figure 4: Binary quire format

The quire value 𝑞 is inferred from the bit fields 𝑆, 𝐶, 𝐼, and 𝐹 as follows:

• If 𝑆 is 1 and all other fields contain only 0 bits, then 𝑞 is NaR.

• Otherwise 𝑞 is 216−8𝑛 times the 2’s complement signed integer represented by all bits concatenated.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

8

4 Rounding

4.1 Definition and method

Rounding is the substitution of a posit value for any real number. Operation results are regarded as exact prior

to rounding. The method for rounding a real value 𝑥 is described by the following algorithm:

Data: 𝑥, a real number

Result: Rounded 𝑥, a posit value
if 𝑥 is exactly expressible in the posit format in question then

return 𝑥
if |𝑥| > maxPos then

return sign(𝑥) × maxPos

if |𝑥| < minPos then
return sign(𝑥) × minPos

Let 𝑢 and 𝑤 be 𝑛-bit posit values such that the open interval (𝑢, 𝑤) contains 𝑥 but no 𝑛-bit posit value.
Let 𝑈 be the 𝑛-bit representation of 𝑢.
Let 𝑣 be the (𝑛 + 1)-bit posit value associated with the (𝑛 + 1)-bit representation 𝑈1.
if 𝑢 < 𝑥 < 𝑣 or (𝑥 = 𝑣 and LSB of 𝑈 is 0) then

return 𝑢
else

return 𝑤
end

4.2 Fused expressions

A fused expression is an expression with two or more operations that is evaluated exactly before rounding to a

posit value. Expressions that can be written in the form of a dot product of vectors of length less than 231 can be

evaluated exactly using quire representations and then rounded to posit format to create a fused expression, if so

defined by the rules of the language. If a fused expression is computed in parallel, sufficient intermediate result

informationmust be communicated that the result is identical to the single-processor result.4 Fused expressions

(such as fused multiply-add and fused multiply-subtract) need not be performed using quire representations to

be posit compliant.

4.3 Program execution restrictions

For any language where the order of operations is well-defined, the execution order of operations in posit com-

pliant mode cannot be changed from that expressed in the source code if it affects rounding. This includes any

use of precisions or operation fusing not expressed in the source code. 5 If a language permits mixed data types

in expressions, including quire and posit format types, or posit and other formats for representing real numbers,

the language must specify how such expressions are evaluated in order to be posit compliant.

4Note that functions in Section 5 which are rounded and have two or more operations in their mathematical definition are fused expres-

sions, such as rSqrt, expMinus1, fMM, and hypot.
5Languages that offer optimization modes that covertly change rounding do so at the cost of bitwise-reproducible results and are non-

compliant when used in those modes.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

9

5 Functions

5.1 Guiding principles for the NaR exceptional value

If an operation usually produces real-valued output, any NaR input produces NaR output, with the exception of

next and prior. NaR is output when the function’s value is not arbitrarily close to a unique real number for open

neighborhoods of complex values sufficiently close to the input values,6 except for discontinuous functions in

Section 5.2. Functions with multiple branches such as roots and inverse trig functions apply this criterion to a

single branch. A test of equality between NaR values returns True. The NaR value has no sign, so sign(NaR)
returns NaR.

The following functions shall be supported, with rounding per Section 4.1. Functions that takemore than one

posit value for input must have the same precision for all posit value inputs, and any posit value in the output

must have the same precision as the input posits. Conversion routines may be used to make mixed-precision

posit value inputs the same precision, per Section 6.1. Conversions may be explicit in source code or implicit by

language rules.

5.2 Basic functions of one posit value argument

negate(posit) returns −posit.7

abs(posit) returns negate(posit) if posit < 0, else posit.
sign(posit) returns a posit value: 1 if posit > 0, −1 if posit < 0, or 0 if posit = 0.
nearestInt(posit) returns the integer-valued posit value nearest to posit, and

returns the nearest even integer-valued posit value if two integers are equally near.

ceil(posit) returns the smallest integer-valued posit value greater than or equal to posit.

floor(posit) returns the largest integer-valued posit value less than or equal to posit.

next(posit) returns the posit value of the lexicographic successor of posit’s representation.8

prior(posit) returns the posit value of the lexicographic predecessor of posit’s representation.9

5.3 Comparison functions of two posit value arguments

All comparison functions return Boolean values identical to comparisons of the posits’ representations regarded

as 2’s complement integers, so there is no need for separate machine-level instructions. The representation

of NaR coincides with the 2’s complement bit string of the most negative integer, so if posit is real, compare-

Less(NaR, posit) returns True, etc.

compareEqual(posit1, posit2) returns True if posit1 = posit2, else False.

compareNotEqual(posit1, posit2) returns True if posit1 ≠ posit2, else False.

compareGreater(posit1, posit2) returns True if posit1 > posit2, else False.

compareGreaterEqual(posit1, posit2) returns True if posit1 ≥ posit2, else False.

compareLess(posit1, posit2) returns True if posit1 < posit2, else False.

compareLessEqual(posit1, posit2) returns True if posit1 ≤ posit2, else False.

5.4 Arithmetic functions of two posit value arguments

addition(posit1, posit2) returns posit1 + posit2, rounded.

subtraction(posit1, posit2) returns posit1 − posit2, rounded.

multiplication(posit1, posit2) returns posit1 × posit2, rounded.

division(posit1, posit2) returns posit1 ÷ posit2, rounded.

6The function may be complex-valued in the neighborhood of the inputs, but still have a real-valued limit. For example, pow(−1, −3) =
(−1)−3 is −1 even though the function is complex-valued in any neighborhood of the second argument. Similarly, sqrt(0) = 0.

7This is the 2’s complement of the posit representation. 2’s complement affects neither 0 nor NaR, since they are unsigned.
8wrapping around, if necessary
9wrapping around, if necessary

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

10

5.5 Elementary functions of one posit value argument

sqrt(posit) returns
√
posit, rounded.

rSqrt(posit) returns 1/
√
posit, rounded.

exp(posit) returns 𝑒posit , rounded.
expMinus1(posit) returns 𝑒posit − 1, rounded.
exp2(posit) returns 2posit , rounded.

exp2Minus1(posit) returns 2posit − 1, rounded.
exp10(posit) returns 10posit , rounded.

exp10Minus1(posit) returns 10posit − 1, rounded.
log(posit) returns log𝑒(posit), rounded.
logPlus1(posit) returns log𝑒(posit + 1), rounded.
log2(posit) returns log2(posit), rounded.
log2Plus1(posit) returns log2(posit + 1), rounded.
log10(posit) returns log10(posit), rounded.
log10Plus1(posit) returns log10(posit + 1), rounded.
sin(posit) returns sin(posit), rounded.
sinPi(posit) returns sin(𝜋 × posit), rounded.

cos(posit) returns cos(posit), rounded.
cosPi(posit) returns cos(𝜋 × posit), rounded.

tan(posit) returns tan(posit), rounded.
tanPi(posit) returns tan(𝜋 × posit), rounded.

arcSin(posit) returns arcsin(posit), rounded. abs(arcSin) ≤ (𝜋/2, rounded).
arcSinPi(posit) returns arcsin(posit) / 𝜋, rounded. abs(arcSinPi) ≤ 1/2.
arcCos(posit) returns arccos(posit), rounded. 0 ≤ arcCos ≤ (𝜋, rounded).
arcCosPi(posit) returns arccos(posit) / 𝜋, rounded. 0 ≤ arcCosPi ≤ 1.
arcTan(posit) returns arctan(posit), rounded. abs(arcTan) ≤ (𝜋/2, rounded).
arcTanPi(posit) returns arctan(posit) / 𝜋, rounded. abs(arcTanPi) ≤ 1/2.
sinH(posit) returns sinh(posit), rounded.
cosH(posit) returns cosh(posit), rounded.
tanH(posit) returns tanh(posit), rounded.
arcSinH(posit) returns arcsinh(posit), rounded.
arcCosH(posit) returns arccosh(posit), rounded. 0 ≤ arcCosH.

arcTanH(posit) returns arctanh(posit), rounded.

5.6 Elementary functions of two posit value arguments

hypot(posit1, posit2) returns √posit1 2 + posit2 2, rounded.

pow(posit1, posit2) returns posit1posit2, rounded.10

arcTan2(posit1, posit2) returns the argument 𝑡 of posit1 + iposit2, −𝜋 < 𝑡 ≤ 𝜋, rounded.11
arcTan2Pi(posit1, posit2) returns arcTan2(posit1, posit2)/𝜋, rounded.

5.7 Functions of three posit value arguments

fMM(posit1, posit2, posit3) returns posit1 × posit2 × posit3, rounded.12

10See Section 5.1 for situations that generate NaR. For example, 𝑥𝑦 is not arbitrarily close to a single real number for any complex-valued

neighborhoods of 𝑥 = 𝑦 = 0, so pow(0, 0) returns NaR.
11The apparent discontinuity in arcTan2(𝑥, 𝑦) for 𝑥 ≤ 0, 𝑦 = 0 is spurious since it results from jumping between branches of a multi-

valued function. It should return 𝜋, rounded, if 𝑥 < 0, 𝑦 = 0. arcTan2(0,0) must return NaR since the function is not arbitrarily close to a

unique real value for any complex-valued open neighborhoods of the inputs.
12Because multiplication is commutative and associative, any permutation of the inputs will return the same rounded result.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

11

5.8 Functions of one posit value argument and one integer argument

compound(posit, integer) returns (1 + posit)integer , rounded.
rootN(posit, integer) returns posit1/integer , rounded. If integer is even, rootN ≥ 0.

5.9 Functions that do not round correctly for all arguments

Computing environments that support versions of functions in any of the above subsections that do not round

correctly for all inputsmust supply the source code for such functions, and use a notation for them that is distinct

from the notation for the corresponding function that rounds correctly for all inputs.

5.10 Functions not yet required for compliance

Special functions such as error functions, Bessel functions, gamma and digamma functions, beta and zeta func-

tions, etc. are not presently required for a system to be posit compliant. Theymay be required in a future revision

of this standard.

5.11 Functions involving quire value arguments

With the exception ofqToPwhich returns a posit value result, these functions return a quire value result.13 If any

operation on quire values overflows the carry bits of a quire’s representation, the result is NaR in quire format.

Where any posit values are involved, their precisions 𝑛 must agree, and the quire must be of the corresponding

precision 16𝑛.

pToQ(posit) returns posit converted to quire format.

qNegate(quire) returns −quire.

qAbs(quire) returns qNegate(quire) if quire < 0, else quire.
qAddP(quire, posit) returns quire + posit.

qSubP(quire, posit) returns quire − posit.

qAddQ(quire1, quire2) returns quire1 + quire2.

qSubQ(quire1, quire2) returns quire1 − quire2.

qMulAdd(quire, posit1, posit2) returns quire + (posit1 × posit2).
qMulSub(quire, posit1, posit2) returns quire − (posit1 × posit2).
qToP(quire) returns quire rounded to posit format per Section 4.1.

Other functions of quire values may be provided, but are not required for compliance. They may be required in

a future revision of this standard.

13These functions can be used to compute the real and imaginary parts of complex number products, exact sums up to length 223+4𝑛, exact
dot products and scaled sums of vectors up to length 231 − 1, exact determinants of 2-by-2 matrices, exact discriminants of quadratic equa-

tions, exact residuals of solutions to systems of linear equations, and higher-precision arithmetic for addition, subtraction, multiplication,

division, and square root of values expressed as unevaluated sums of posit value lists. A quire value’s rounded posit value can repeatedly be

subtracted from it, and those rounded values gathered for representing a quire value as an unevaluated sum of posit values. For example,

if quire8 contained a 𝜋 approximation 3217
1024 = 3.1416015625, repeated rounding to posit8 and subtracting would produce terms of an

unevaluated sum { 13
4 , −7

64 , 1
1024 }. An unevaluated sum can be multiplied by another evaluated sum as an exact dot product, using the quire.

scale=1,angle=0,color=black,contents=

Posit Standard (2022)

12

6 Conversion operations for posit format

6.1 Conversions between different precisions

Converting a posit value to higher precision is exact, by appending 0 bits to its representation. Conversion to a

lower precision is rounded, per Section 4.1.14 In the function notation used here,

p𝑚To𝑛(posit) returns the𝑛-bit posit representation of an𝑚-bit posit value posit by these conversion

rules.

6.2 Conversions involving quire values

A posit compliant system only needs to support rounding from quire to posit values and conversion of posit to s

in the matching precision, per Section 5.11.

6.3 Conversions between posit format and decimal character strings

Table 2 shows examples of the minimum number of significant decimals needed to express a posit value such

that the real number represented by the decimal form will round to the same posit value.

precision posit8 posit16 posit32 posit64

Decimals 2 5 10 21

Table 2: Examples of minimum decimals in a base-ten significand to preserve any posit value

6.4 Conversions between posit format and integer format

Supported posit formats must provide conversion to and from all integer formats supported in a computing en-

vironment. In converting a posit value to an integer value, if the posit value is out of integer range after rounding

or is NaR, the integer value is returned the representation of which has its MSB = 1 and all other bits 0. In con-
verting an integer value to a posit value, the integer representationwith its MSB = 1 and all other bits 0 converts
to NaR; otherwise, the integer value is rounded, per Section 4.1.

6.5 Conversions between posit format and IEEE Std 754™ float format

Supported posit formats must provide conversions to and from the IEEE Std 754 float formats supported in the

computing environment, if any. In converting a posit value to an IEEE Std 754 float value of any type, the posit

value zero converts to the “positive zero” float value, and NaR converts to quiet NaN. Otherwise, the posit value

is converted to a float value per the float rounding mode in use. In converting a float value to a posit value, all

forms of infinity and NaN convert to NaR. Otherwise, the float value is rounded, per Section 4.1. “Negative zero”

and “positive zero” float values convert to the posit value zero. �

14Note that precision conversion does not require decoding a posit representation into its bit fields.

	Overview
	Scope
	Purpose
	Inclusions and exclusions
	Requirements vs. recommendations, and posit-compliance

	Definitions, abbreviations, and acronyms
	Posit and quire formats
	Formats
	Represented data
	Posit format encoding
	Quire format encoding

	Rounding
	Definition and method
	Fused expressions
	Program execution restrictions

	Functions
	Guiding principles for the NaR exceptional value
	Basic functions of one posit value argument
	Comparison functions of two posit value arguments
	Arithmetic functions of two posit value arguments
	Elementary functions of one posit value argument
	Elementary functions of two posit value arguments
	Functions of three posit value arguments
	Functions of one posit value argument and one integer argument
	Functions that do not round correctly for all arguments
	Functions not yet required for compliance
	Functions involving quire value arguments

	Conversion operations for posit format
	Conversions between different precisions
	Conversions involving quire values
	Conversions between posit format and decimal character strings
	Conversions between posit format and integer format
	Conversions between posit format and IEEE Std 754™ float format

