
Posit Standard Documentation

Release 3.2-draft

Posit Working Group

Jun 23, 2018

Contents

1 Overview 3
1.1 Scope . 3
1.2 Purpose . 3
1.3 Inclusions . 3
1.4 Requirements vs. Recommendations . 3
1.5 Programming Environment . 3

2 Definitions, abbreviations, and acronyms 4
2.1 Definitions . 4

3 Posit and quire formats 6
3.1 Overview . 6

3.1.1 Formats . 6
3.1.2 Compliance . 6
3.1.3 Represented data . 6

3.2 Binary interchange format encoding . 7
3.2.1 Posit format encoding . 7
3.2.2 Quire format encoding . 8

4 Rounding 9
4.1 Definition and Method . 9
4.2 Fused Operations . 9

5 Operations 10
5.1 Guiding principles . 10
5.2 Mathematical functions . 10

5.2.1 Elementary functions of one argument . 10
5.2.2 Elementary functions of two arguments . 10
5.2.3 Comparison functions of two arguments . 10
5.2.4 Functions of one argument . 10
5.2.5 Functions of two posit arguments . 11
5.2.6 Functions of a posit argument and an integer argument 11

6 Conversion to and from character format 12
6.1 Guiding principles . 12

7 Language support 13
7.1 Guiding principles . 13

1

Standard for Posit Arithmetic

Sponsor

Agency for Science, Technology and Research (A*STAR)

Abstract

This standard specifies the storage format, operation behavior, and required mathematical functions for
posit arithmetic in computing environments. It describes the binary storage used by the computer and the
human-readable character input and output for posit representation. They may be realized in software or
hardware or any combination of the two. A system that meets this standard is said to be posit compliant
and will produce results that are identical to any other posit compliant system.

Keywords

Arithmetic, binary, exponent, format, fraction, NaR, number rounding, quire, regime

Participants

The following people in the Posit Working Group contributed to the development of this standard:
John Gustafson, Chair
Gerd Bohlender
Vassil Dimitrov
Siew Hoon Leong (Cerlane)
Peter Lindstrom
Theodore Omtzigt
Andrew Shewmaker
Isaac Yonemoto
Other valued contributors include:
Shin Yee Chung
Geoff Jones

2

1 Overview

1.1 Scope

This standard specifies the storage format and mathematical behavior of posit numbers, and the set of func-
tions a posit arithmetic system must support, including basic arithmetic operations. It includes a description
of how results are to be rounded, what situations generate an exception, and whether those exceptions are
handled by the implementation or by the user.

1.2 Purpose

This standard provides a system for computing with real numbers represented in a computer using fixed-size
binary values. Deviations from mathematical behavior (including loss of accuracy) are kept to a minimum
while preserving the ability to represent a wide dynamic range of values. All features are accessible by
programming languages; the source program and input data are sufficient to specify the output exactly on
any computer system, similar to the way 2’s complement integer arithmetic produces bitwise-identical results.

1.3 Inclusions

This standard specifies:

• Formats for binary data, for computation and data interchange

• Addition, subtraction, multiplication, division, dot product, compare, and other operations

• Mathematical functions such as logarithm, exponential, trigonometric, and hyperbolic functions

• Conversions of other number representations to posit format

• Conversions between different posit formats

• Exception handling when a result is not a real number (NaR).

1.4 Requirements vs. Recommendations

All descriptions herein are requirements of the behavior of the system. The decision of how to satisfy the
requirements (using any combination of hardware and software) is up to the implementer of this standard,
but all functionality must be provided and behave as described for a system to be posit-compliant.

1.5 Programming Environment

A programming environment may claim to be compliant with this standard if it supports at least one of the
four precisions (8, 16, 32, 64) completely. If it includes more than one precision, then it must also provide
the ability to convert between those precisions.

3

2 Definitions, abbreviations, and acronyms

2.1 Definitions

correct rounding This standard’s method of converting an infinitely precise value to a posit. A posit so
obtained is said to be correctly rounded.

es exponent size. The maximum number of bits 0, 1, 2, 3, . . . that are available for expressing the exponent.

exponent The part of the power-of-two scaling determined by the exponent bits.

exponent bits A field of bits within a posit that, in combination with the regime bits, determines the
power-of-two scaling of the fraction.

exponent size es

format A set of bits and the definition of their meaning.

fraction The component of a posit containing its significant binary digits after the binary point; 0 ≤
fraction < 1.

hidden bit An assumed 1 bit before the MSB of the fraction.

LSB least significant bit

lg logarithm base 2

MSB most significant bit

maxpos The largest real value expressible as a posit.

minpos The smallest nonzero value expressible as a posit.

NaR Not a real. A value that has infinite magnitude, is indeterminate, is multi-valued, or requires an
imaginary component to express (like

√
−1) is represented as NaR .

nbits number of bits. The precision of a posit format, the total number of bits (8, 16, 32, or 64).

not a real number NaR

number of bits nbits

pintmax posit integer maximum. The largest consecutive integer expressible as a posit.

posit A real number that is exactly representable using a fixed number of bits in the format described in
this standard, or a NaR .

precision The number of bits available for expressing a quantity.

quire A fixed-point format capable of storing sums of products of posits without rounding, up to some large
number of such products.

regime A subfield of a posit consisting of some number of identical bits terminated by the opposite bit or
the end of the number, that contributes to the specification of the power-of-two scaling of the fraction.

sign The value +1 for positive numbers, -1 for negative numbers. Exception values 0 and NaR have no sign.

sign bit The MSB of a posit or quire, 0 or 1.

significand The implicit 1 bit followed by the fraction bits; 1 ≤ significand < 2.

universal number unum

unum universal numbers express real numbers (posits) and ranges of real numbers (valids).

4

unum seed useed

useed unum seed. A value obtained by starting with 2 and squaring repeatedly es times: 2, 4, 16, 256,
. . . influencing the way the projective real circle of unums gets populated.

5

property posit8 posit16 posit32 posit64
Max significand bits 6 13 28 59
Max exponent bits, es 0 1 2 3
minpos 2−6 ≈ 1.5× 10−2 2−28 ≈ 3.7× 10−9 2−120 ≈ 7.5× 10−37 2−496 ≈ 4.9× 10−150

maxpos 26 ≈ 6.4× 101 228 ≈ 2.7× 108 2120 ≈ 1.3× 1036 2496 ≈ 2.0× 10149

pintmax 8 256 222 252

quire bits 32 128 512 2048
Exact sum quire limit 32767 243 − 1 2151 − 1 2559 − 1
Exact dot product quire limit 127 32767 231 − 1 263 − 1

Table 1: Properties of posit formats

3 Posit and quire formats

3.1 Overview

3.1.1 Formats

This clause defines posit formats, which are used to represent a finite set of real numbers. Posit formats are
specified by their precision, nbits. For each posit format, there is also a format of size nbits2/2 that is used
to contain exact sums of products of posits. All properties such as dynamic range, accuracy, quire size and
format, are determined solely by the precision.

There are four precisions described in this standard: 8, 16, 32, and 64. We sometimes refer to the four
corresponding formats as posit8, posit16, posit32, and posit64.

3.1.2 Compliance

An implementation is compliant with this standard if it supports full functionality of at least one precision
(8, 16, 32, or 64). If the implementation supports more than one precision, then it must support conversions
between the precisions that it supports.

Note: If hardware supports posit multiplication, addition, subtraction, and the quire, all remaining
functionality can be supported with software.

3.1.3 Represented data

Within each format, a posit represents either NaR, or a number of the form m × 2n, where m and n are
integers limited to a range symmetrical about and including zero. The maximum m range is −2p < m < 2p

where p = nbits− lg(nbits) + 1 is the maximum number of significant digits (bits).

The smallest positive posit, minpos, is 2
1
8nbits(2−nbits) and the largest positive posit, maxpos, is the

reciprocal of minpos, or 2
1
8nbits(nbits−2). Every posit is an integer multiple of minpos. Every real number

maps to a unique posit representation; there are no redundant representations.
The quire represents either NaR or an integer multiple of minpos2, represented as a 2’s complement binary

number with 2nbits
2/2 bits. This enables it to add a list of posits or a list of exact products of posits without

rounding error and thereby satisfy the associative and distributive laws of algebra up to some minimum
length. Sums of lists longer than that minimum are capable of integer overflow.

Posits can exactly express all integers i in a range −pintmax ≤ i ≤ pintmax; outside that range, integers
exist that cannot be expressed as a posit without rounding to a different integer.

The values for the posit formats are summarized in properties-table.
The exact sum quire limit and exact dot product quire limit are the number of additions or multiplication-

additions up to which the quire cannot overflow. Up to these limits, the quire obeys the associative law of
addition and the distributive law.

6

S (sign) R (regime) E (exponent) F (fraction)

1 bit MSB LSBr + 1 bits

R0Rr

MSB LSBe bits

E0Ee−1

MSB LSBf bits

F0Ff−1

Figure 1: General binary posit format

S (sign) R (regime)

1 bit MSB LSBr bits

R0Rr−1

Figure 2: Binary posit format with zero-length exponent and fraction

3.2 Binary interchange format encoding

3.2.1 Posit format encoding

All posits have just one encoding in a binary interchange format shown in posit format encoding-general and
posit format encoding-signedregime. The four fields are:

1. Sign bit S

2. Regime R consisting of r bits identical to R0, terminated by 1−R0 (r+ 1 bits total length) or the end
of the posit (r bits total length).

3. Exponent E represented by e exponent bits, terminated by a maximum of es or the end of the posit

4. Fraction F represented by f fraction bits, terminated by the end of the posit

The meaning of each field is as follows:

1. S is its literal value, 0 or 1.

2. R is −r if R0 is 0, and r − 1 if R0 is 1.

3. E is an es-bit unsigned integer, with 0 bit padding in the least significant bits if the exponent field has
fewer than es bits because of the regime length.

4. F represents an unsigned integer divided by 2f .

Note
The exponent field size e and fraction field size f can each be 0, in which case they represent 0; 0 ≤ e ≤ es

and 0 ≤ f ≤ nbits− lg(nbits). The hidden bit is 1 even if f is 0.
The representation (S,R,E, F) of the posit and value v of the datum represented are inferred from the

fields as follows:

1. If S = 0 and all other fields contain only 0 bits, then v = 0.

2. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

3. If any bits in the (R,E, F) are 1, then (1− 3S + F)× 2(−1)S(R×2
es

+E+S).

7

S (sign) C (carry guard) I (integer) F (fraction)

1 bit MSB LSBc bits

C0Cc−1

MSB LSBnq bits

I0 Inq−1

MSB LSBnq bits

F0Fnq−1

Figure 3: Binary quire format

3.2.2 Quire format encoding

The quire is a fixed-point 2’s complement value of length nbits2/2 which is 32, 128, 512, or 2048 bits for the
posit sizes 8, 16, 32, and 64 respectively.

The number of bits for the fraction is nq = 1/4nbits2 − 1/2nbits. The integer part also has nq bits. The
carry guard has c = nbits − 1 bits to guarantee that sums of products cannot overflow, up to 2nbits−1 − 1
products.

The representation (S,C, I, F) of the quire and value v of the datum represented are inferred from the
fields as follows:

1. If S = 1 and all other fields contain only 0 bits, then v is NaR and undefined.

2. For all other cases, the value v is the 2’s complement signed integer represented by all bits, divided by
2nq.

8

4 Rounding

4.1 Definition and Method

Rounding is the substitution of an expressible posit for any exact real number that is not expressible as a
posit. The results of all operations are regarded as mathematically exact prior to rounding.

The method for rounding a real value x is as follows:

1. If x is exactly expressible as a posit, it is unchanged.

2. If |x| > maxpos, x is rounded to sign(x) * maxpos .

3. If 0 < |x| < minpos, x is rounded to sign(x) * minpos .

4. For all other values, the value is rounded to the nearest binary value if the posit were encoded to infinite
precision beyond the nbits length; if two posits are equally near, the one with binary encoding ending
in 0 is selected.

Note: Rule (4) has the effect of rounding to the posit with the nearest logarithm when the dropped bit
is an exponent bit, and to the nearest posit by absolute difference in other cases.

4.2 Fused Operations

A fused operation is an expression with two or more operations that is not rounded until the entire expres-
sion is evaluated exactly. Fused operations are distinct from non-fused operations and must be explicitly
requested in a posit-compliant programming environment. Fused operations are those expressible as sums
and differences of the exact product of two posits; no other fused operations are allowed.

All fused operations can be performed as accumulations in a . A particular posit environment may perform
fused operations without using a quire, but may not fuse any operations that cannot be performed as exact
dot products of vectors with posit components. Exact sums are dot products where one vector consists of
all 1 values. The fused multiply-add operation ab+ c is a dot product of vectors (a, 1) and (b, c). A complex
product (a+ bi)× (c+di) can be performed as two fused operations, ac− bd and ad+ bc. An expression such
as abc or ab/d is not in the form of the sum or difference of products and may not be fused.

9

5 Operations

5.1 Guiding principles

If NaR is the input to an operation, the result is also NaR . For a function f(p) of a posit p, the mathematical
value y is the limit f(x) as x approaches p within the domain of the function, from any direction. If that
limit is a determinate real number, the operation should return the closest posit to y using the rounding
rules of clause 4. Similarly, for functions of more than one argument; the limits for each argument are taken
without correlation to one another. If the limit is not a real number, the result is NaR .

Many functions are identical to standard 2’s complement integer operations. The internal processor flags
for those posit operations behave identically.

5.2 Mathematical functions

The following functions shall be supported, with correct rounding for all input arguments per clause 4. If
cases can produce NaR from non-NaR inputs, the function description notes those cases.

5.2.1 Elementary functions of one argument

negate(posit) is identical to 2’s complement integer negation.
abs(posit) is identical to 2’s complement integer absolute value.
round(posit) converts posit to the nearest posit with integer value, and the nearest even integer if two

integers are equally far from posit.
sign(posit) returns 1 if the value of posit is positive, and -1 if the value of posit is 1. If posit is zero or

NaR, sign(posit) returns 0.

5.2.2 Elementary functions of two arguments

addition(posit1, posit2) returns posit1 + posit2 , rounded

subtraction(posit1, posit2) returns posit1 - posit2 , rounded

multiplication(posit1, posit2) returns posit1 * posit2 , rounded

division(posit1, posit2) returns NaR if posit2 is 0, else posit1 / posit2 , rounded

5.2.3 Comparison functions of two arguments

All comparison functions are identical to the comparisons of the posit bit strings regarded as 2’s complement
integers, so there is no need for separate machine-level instructions. The value NaR has the bit string of the
most negative integer, so NaR < posit returns True if posit is not NaR . The posit environment shall
support:

boolean compareEqual(posit1 , posit2)

boolean compareNotEqual(posit1 , posit2)

boolean compareGreater(posit1 , posit2)

boolean compareGreaterEqual(posit1 , posit2)

boolean compareLess(posit1 , posit2)

boolean compareLessEqual(posit1 , posit2)

Note: Testing if a posit is NaR is not an exception: compareEqual(NaR, posit).

5.2.4 Functions of one argument

sqrt(posit) returns NaR if posit < 0, else the square root of posit, rounded.
rSqrt(posit) returns NaR if posit < 0, else 1/sqrt(posit), rounded.
exp(posit) returns eposit, rounded.
expm1(posit) returns eposit − 1, rounded.

10

exp2(posit) returns 2posit, rounded.
exp2m1(posit) returns 2posit − 1, rounded.
exp10(posit) returns 10posit, rounded.
exp10m1(posit) returns 10posit − 1, rounded.
log(posit) returns loge(posit), rounded. Returns NaR if posit ≤ 0.
logp1(posit) returns loge(posit+ 1), rounded. Returns NaR if posit ≤ −1.
log2(posit) returns log2(posit), rounded. Returns NaR if posit ≤ 0.
log2p1(posit) returns log2(posit+ 1), rounded. Returns NaR if posit ≤ −1.
log10(posit) returns log10(posit), rounded. Returns NaR if posit ≤ 0.
log10p1(posit) returns log10(posit+ 1), rounded. Returns NaR if posit ≤ −1.
sin(posit) returns sin(posit), rounded.
sinPi(posit) returns sin(π × posit), rounded.
cos(posit) returns cos(posit), rounded.
cosPi(posit) returns cos(π × posit), rounded.
tan(posit) returns tan(posit), rounded.
tanPi(posit) returns tan(π × posit), rounded.
asin(posit) returns NaR if |posit| > 1, else arcsin(posit), rounded.
asinPi(posit) returns NaR if |posit| > 1, else arcsin(posit) / π, rounded.
acos(posit) returns NaR if |posit| > 1, else arccos(posit), rounded.
acosPi(posit) returns NaR if |posit| > 1, else arccos(posit) / π, rounded.
atan(posit) returns arctan(posit), rounded.
atanPi(posit) returns arctan(posit) / π, rounded.
sinh(posit) returns sin(posit), rounded.
cosh(posit) returns cos(posit), rounded.
tanh(posit) returns tan(posit), rounded.
asinh(posit) returns NaR if |posit| > 1, else arcsin(posit), rounded.
acosh(posit) returns NaR if |posit| > 1, else arccos(posit), rounded.
atanh(posit) returns arctan(posit), rounded.

5.2.5 Functions of two posit arguments

hypot(posit1, posit2) returns the square root of posit12 + posit22, rounded.
pow(posit1, posit2) returns posit1posit2, rounded. (exceptions. . .)
atan2(posit1, posit2) atan2Pi**(posit1, posit2)

5.2.6 Functions of a posit argument and an integer argument

compound(posit, n) returns NaR if x ≤ − 1, else (1 + x)n, rounded
pown(posit, n) returns NaR if . . . ,
rootn(posit, n)

11

6 Conversion to and from character format

6.1 Guiding principles

Complete section on conversion to and from character format

12

7 Language support

7.1 Guiding principles

Complete section on language support

13

	Overview
	Scope
	Purpose
	Inclusions
	Requirements vs. Recommendations
	Programming Environment

	Definitions, abbreviations, and acronyms
	Definitions

	Posit and quire formats
	Overview
	Formats
	Compliance
	Represented data

	Binary interchange format encoding
	Posit format encoding
	Quire format encoding

	Rounding
	Definition and Method
	Fused Operations

	Operations
	Guiding principles
	Mathematical functions
	Elementary functions of one argument
	Elementary functions of two arguments
	Comparison functions of two arguments
	Functions of one argument
	Functions of two posit arguments
	Functions of a posit argument and an integer argument

	Conversion to and from character format
	Guiding principles

	Language support
	Guiding principles

